【題目】如圖,,、、分別平分、和。以下結(jié)論:①;②;③;④. 其中正確的結(jié)論是
A. ①②③B. ②③④C. ①③④D. ①②④
【答案】D
【解析】
由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,再由平行線的判定即可判斷出①是否正確;
由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,進而可判斷出②是否正確;
由∠BAC+∠ABC=∠ACF,得出∠BAC+∠ABC=∠ACF,再與∠BDC+∠DBC=∠ACF相結(jié)合,得出∠BAC=∠BDC,進而可判斷出③是否正確.
在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的關(guān)系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,進而可判斷出④是否正確;
①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正確.
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正確.
③∵∠BAC+∠ABC=∠ACF,
∴ ∠BAC+∠ABC=∠ACF,
∵∠BDC+∠DBC=∠ACF,
∴∠BAC+∠ABC=∠BDC+∠DBC,
∵∠DBC=∠ABC,
∴∠BAC=∠BDC,即∠BDC=∠BAC.
故③錯誤.
④在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,
故④正確;
故選D
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,平分,于點交于點,延長至使,連接.
(1)證明:四邊形是矩形;
(2)當時,猜想線段、、的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點D是BC邊上一點(不與點B、C重合),以AD為邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE,設∠BAC=α,∠BCE=β.
(1)線段BD、CE的數(shù)量關(guān)系是________;并說明理由;
(2)探究:當點D在BC邊上移動時,α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
(3)如圖2,若∠BAC=90°,CE與BA的延長線交于點F.求證:EF=DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月23日是第24個世界讀書日.為了弘揚中華傳統(tǒng)文化,我縣某學校舉辦了“讓讀書成為習慣,讓書香飄滿校園”主題活動,為此特為每個班級訂購了一批新的圖書.初一(1)班訂購老舍文集4套和四大名著2套,總費用為480元;初一(2)班訂購老舍文集2套和四大名著3套,總費用為520元.
(1)求老舍文集和四大名著每套各是多少元?
(2)學校準備再購買老舍文集和四大名著共20套,總費用不超過1720元,購買老舍文集的數(shù)量不超過四大名著的3倍,問學校有幾種購買方案,請你設計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點E、F分別是AB、AC的中點.
(1)求證:四邊形AEDF是菱形;
(2)如果四邊形AEDF的周長為12,兩條對角線的和等于7,求四邊形AEDF的面積S.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2012年4月,受“毒膠囊”事件的影響,某種藥品的價格大幅度下調(diào),下調(diào)后每盒價格是原價的,已知下調(diào)后每盒價格是10元/盒.
(1)該藥品的原價是_______元;
(2)4月底,各部門加大了對膠囊生產(chǎn)的監(jiān)管力度,因此,藥品價格開始回升,經(jīng)過兩個月后,該藥品價格上調(diào)為14.4元/盒. 問5、6月份該藥品價格的月平均增長率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為8的等邊置于平面直角坐標系中,點在軸正半軸上,過點作于點,將繞著原點逆時針旋轉(zhuǎn)得到,這時,點恰好落在軸上.若動點從原點出發(fā),沿線段向終點運動,動點從點出發(fā),沿線段向終點運動,兩點同時出發(fā),速度均為每秒1個單位長度.設運動的時間為秒.
(1)請直接寫出點、點的坐標;
(2)當的面積為時,求的值;
(3)設與相交于點,當為何值時, 與相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,是用3根相同火柴棒拼成的一個三角圖形,記為一個基本圖形,將此基本圖形不斷的復制,使得相鄰的兩個基本圖形的邊重合,這樣得到圖②,圖③…
(1)觀察以上圖形,圖④中所用火柴棒的根數(shù)為_________,
猜想:在圖n中,所用火柴棒的根數(shù)為_________(用n表示);
(2)如圖,將圖n放在直角坐標系中,設其中第一個基本圖形的中心O1的坐標為(,),則=_________;的坐標為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com