【題目】三棱錐P﹣ABC的三條側(cè)棱兩兩垂直,且PA=PB=PC=1,則其外接球上的點到平面ABC的距離的最大值為(
A.
B.
C.
D.

【答案】D
【解析】解:空間四個點P、A、B、C在同一球面上,PA、PB、PC兩兩垂直,且PA=PB=PC=1, 則PA、PB、PC可看作是正方體的一個頂點發(fā)出的三條棱,
所以過空間四個點P、A、B、C的球面即為的正方體的外接球,球的直徑即是正方體的對角線,長為 ,
球心O到平面ABC的距離為體對角線的 ,即球心O到平面ABC的距離為
其外接球上的點到平面ABC的距離的最大值為: + =
故選:D.
將PA、PB、PC可看作是正方體的一個頂點發(fā)出的三條棱,所以過空間四個點P、A、B、C的球面即為的正方體的外接球,球的直徑即是正方體的對角線,求出對角線長,即為球的直徑,而球心O到平面ABC的距離為體對角線的 ,然后求解結(jié)果即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線C1:x2=2py(p>0)與圓C2:x2+y2=5的兩個交點之間的距離為4. (Ⅰ)求p的值;
(Ⅱ)設(shè)過拋物線C1的焦點F且斜率為k的直線與拋物線交于A,B兩點,與圓C2交于C,D兩點,當k∈[0,1]時,求|AB||CD|的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務(wù)的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= + (1﹣a2)x2﹣ax,其中a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為8x+y﹣2=0,求a的值;
(2)當a≠0時,求函數(shù)f(x)(x>0)的單調(diào)區(qū)間與極值;
(3)若a=1,存在實數(shù)m,使得方程f(x)=m恰好有三個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,已知四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且點A為線段SD的中點,AD=2DC=1,AB=SD,現(xiàn)將△SAB沿AB進行翻折,使得二面角S﹣AB﹣C的大小為90°,得到的圖形如圖(2)所示,連接SC,點E、F分別在線段SB、SC上.
(1)證明:BD⊥AF;
(2)若三棱錐B﹣AEC的體積是四棱錐S﹣ABCD體積的 ,求點E到平面ABCD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,過C作⊙O的切線交AB的延長線于E , ADCED , 連結(jié)AC.

(1)求證:AC平分∠BAD.
(2)若tan∠CAD= ,AD=8,求⊙O直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件屬于必然事件的是(
A.姚明罰球線上投籃,投進籃筐
B.某種彩票的中獎率為 ,購買100張彩票一定中獎
C.擲一次骰子,向上一面的點數(shù)是6
D.367人中至少有兩人的生日在同一天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學(xué)為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學(xué)計算出信號塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 ).

查看答案和解析>>

同步練習(xí)冊答案