如圖,已知平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AC=20cm、BD=12cm,兩動(dòng)點(diǎn)E、F同時(shí)分別以2cm/s的速度從點(diǎn)A、C出發(fā)在線段AC相對(duì)上運(yùn)動(dòng).
(1)求證:當(dāng)E、F運(yùn)動(dòng)過(guò)程中不與點(diǎn)O重合時(shí),四邊形BEDF一定為平行四邊形;
(2)當(dāng)E、F運(yùn)動(dòng)時(shí)間t為何值時(shí),四邊形BEDF為矩形?

【答案】分析:(1)連接DE,EB,BF,F(xiàn)D,根據(jù)已知可得AE=CF,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可證明四邊形BEDF為平行四邊形;
(2)應(yīng)考慮兩種情況:當(dāng)點(diǎn)E在OA上,點(diǎn)F在OC上時(shí)EF=BD=12cm,四邊形BEDF為矩形;當(dāng)點(diǎn)E在OC上,點(diǎn)F在OA上時(shí),EF=BD=12cm,四邊形BEDF為矩形.
解答:(1)解:連接DE,EB,BF,F(xiàn)D
∵兩動(dòng)點(diǎn)E、F同時(shí)分別以2cm/s的速度從點(diǎn)A、C出發(fā)在線段AC相對(duì)上運(yùn)動(dòng).
∴AE=CF
∵平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,
∴OD=OB,OA=OC(平行四邊形的對(duì)角線互相平分)
∴OA-AE=OC-CF或AE+OA=CF+OC
即OE=OF,
∴四邊形BEDF為平行四邊形.(對(duì)角線互相平分的四邊形是平行四邊形)(4分)

(2)當(dāng)點(diǎn)E在OA上,點(diǎn)F在OC上時(shí)EF=BD=12cm,
四邊形BEDF為矩形
∵運(yùn)動(dòng)時(shí)間為t
∴AE=CF=2t
∴EF=20-4t=12
∴t=2(s)
當(dāng)點(diǎn)E在OC上,點(diǎn)F在OA上時(shí),EF=BD=12cm
EF=4t-20=12
∴t=8(s)
因此當(dāng)E、F運(yùn)動(dòng)時(shí)間2s或8s時(shí),四邊形BEDF為矩形.(10分)
說(shuō)明:如果學(xué)生有不同的解題方法.只要正確,可參照本評(píng)分標(biāo)準(zhǔn),酌情給分.
點(diǎn)評(píng):此題主要考查平行四邊形、矩形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形DEFG與正方形ABCD有一個(gè)公共頂點(diǎn)D,G在CB或其延長(zhǎng)線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個(gè)交點(diǎn)P、Q的橫坐標(biāo)分別為x1,x2,且x1>0,x2>0,正方形AB精英家教網(wǎng)CD的邊長(zhǎng)a等于點(diǎn)P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長(zhǎng)分別等于x1,x2,并設(shè)
CGCB
=k
,求sin∠E和k.
((2),(3)的結(jié)果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,BD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)交AB,DC于E,F(xiàn).
(1)證明:四邊形BFDE是平行四邊形;
(2)BD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)
 
度時(shí),平行四邊形BFDE為菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過(guò)P點(diǎn)作MN∥AD,EF∥CD,分別精英家教網(wǎng)交AB、CD、AD、BC于M、N、E、F,設(shè)a=PM•PE,b=PN•PF.
(1)請(qǐng)判斷a與b的大小關(guān)系,并說(shuō)明理由;
(2)當(dāng)
BP
PD
=2
時(shí),求
S平行四邊形PEAM
S△ABD
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)F(保留作圖痕跡,不寫(xiě)作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請(qǐng)你寫(xiě)出其他的等腰三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD,作DE⊥AB,垂足為E,把三角形AED沿AB方向平移AB長(zhǎng)個(gè)單位長(zhǎng)度.
(1)作出平移后的圖形;
(2)經(jīng)過(guò)這樣的平移后,原來(lái)的圖形變成了什么圖形?
(3)這兩個(gè)圖形的面積相等嗎?只需給出答案,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案