某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌文具盒的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.當(dāng)購進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購進(jìn)甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨單價(jià);
(3)若該超市每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進(jìn)甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
考點(diǎn):
一次函數(shù)的應(yīng)用.
分析:
(1)根據(jù)函數(shù)圖象由待定系數(shù)法就可以直接求出y與x之間的函數(shù)關(guān)系式;
(2)設(shè)甲品牌進(jìn)貨單價(jià)是a元,則乙品牌的進(jìn)貨單價(jià)是2a元,根據(jù)購進(jìn)甲品牌文具盒120個(gè)可以求出乙品牌的文具盒的個(gè)數(shù),由共需7200元為等量關(guān)系建立方程求出其解即可;
(3)設(shè)甲品牌進(jìn)貨m個(gè),則乙品牌的進(jìn)貨(﹣m+300)個(gè),根據(jù)條件建立不等式組求出其解即可.
解答:
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,由函數(shù)圖象,得
,
解得:,
∴y與x之間的函數(shù)關(guān)系式為y=﹣x+300;
(2)∵y=﹣x+300;
∴當(dāng)x=120時(shí),y=180.
設(shè)甲品牌進(jìn)貨單價(jià)是a元,則乙品牌的進(jìn)貨單價(jià)是2a元,由題意,得
120a+180×2a=7200,
解得:a=15,
∴乙品牌的進(jìn)貨單價(jià)是30元.
答:甲、乙兩種品牌的文具盒進(jìn)貨單價(jià)分別為15元,30元;
(3)設(shè)甲品牌進(jìn)貨m個(gè),則乙品牌的進(jìn)貨(﹣m+300)個(gè),由題意,得
,
解得:180≤m≤181,
∵m為整數(shù),
∴m=180,181.
∴共有兩種進(jìn)貨方案:
方案1:甲品牌進(jìn)貨180個(gè),則乙品牌的進(jìn)貨120個(gè);
方案2:甲品牌進(jìn)貨181個(gè),則乙品牌的進(jìn)貨119個(gè);
設(shè)兩種品牌的文具盒全部售出后獲得的利潤為W元,由題意,得
W=4m+9(﹣m+300)=﹣5m+2700.
∵k=﹣5<0,
∴W隨m的增大而減小,
∴m=180時(shí),W最大=1800元.
點(diǎn)評:
本題考查了待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,列一元一次方程解實(shí)際問題的運(yùn)用,列一元一次不等式組解實(shí)際問題的運(yùn)用,解答時(shí)求出第一問的解析式是解答后面問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌文具盒的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.當(dāng)購進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購進(jìn)甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨單價(jià);
(3)若該超市每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進(jìn)甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(貴州黔東南卷)數(shù)學(xué)(解析版) 題型:解答題
某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌文具盒的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.當(dāng)購進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購進(jìn)甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨單價(jià);
(3)若該超市每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進(jìn)甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年貴州省黔東南州中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com