已知:將一副三角板(RtABCRtDEF)如圖①擺放,點EA、D、B在一條直線上,且DAB的中點。將RtDEF繞點D順時針方向旋轉角α(0°<α90°),在旋轉過程中,直線DEAC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為GH。

(1)當α30°時(如圖②),求證:AG=DH;

(2)當α60°時(如圖③),(1)中的結論是否成立?請寫出你的結論,并說明理由;

(3)當0°<α90°時,(1)中的結論是否成立?請寫出你的結論,并根據(jù)圖④說明理由。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據(jù)圖④說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:將一副三角板(Rt△ABC和Rt△DEF)如圖①擺放,點E、A、D、B在一條直線上,且D是AB中點,將Rt△DEF繞著點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)猜想:在旋轉過程中,AG與DH的數(shù)量關系是:
相等
相等
;
(2)就旋轉角α的情況,請選擇圖②、③、④中的一種情況,對你的猜想進行證明.
友情提示:若選擇圖②(即α=30°時),滿分為8分;若選擇圖③(即α=60°時),滿分為10分;選擇圖④(即任意情況0°<α<90°時).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:將一副三角板(Rt△ABC和Rt△DEF)如圖①擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖②),求證:AG=DH;
(2)當0°<α<90°時,(1)中的結論是否成立?請根據(jù)圖③說明理由.
(3)在Rt△DEF繞點D順時針方向旋轉過程中,DM與DN的比值是否發(fā)生改變?如果不改變,請直接寫出比值;如果改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省湖州市菱湖一中八年級上學期期中考試數(shù)學卷 題型:解答題

已知:將一副三角板(Rt△ABC和Rt△DEF)如圖①擺放,點E、A、D、B在一條直線上,且D是AB的中點。將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
【小題1】當α=30°時,DF剛好過點C(如圖②),求證:AM=DM;
【小題2】在(1)的條件下,試判斷線段AG與DH的數(shù)量關系,并說明理由;
【小題3】“當在Rt△DEF繞點D順時針方向旋轉過程中時α=60°(如圖③),(2)中的結論是否成立?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省湖州市八年級上學期期中考試數(shù)學卷 題型:解答題

已知:將一副三角板(Rt△ABC和Rt△DEF)如圖①擺放,點E、A、D、B在一條直線上,且D是AB的中點。將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.

1.當α=30°時,DF剛好過點C(如圖②),求證:AM=DM;

2.在(1)的條件下,試判斷線段AG與DH的數(shù)量關系,并說明理由;

3.“當在Rt△DEF繞點D順時針方向旋轉過程中時α=60°(如圖③),(2)中的結論是否成立?

 

查看答案和解析>>

同步練習冊答案