【題目】已知點O是直線AB上的一點,∠COE=90°,OF是∠AOE的平分線.
(1)當(dāng)點C.E.F在直線AB的同側(cè)(如圖1所示)①若∠COF=25°,求∠BOE的度數(shù);②若∠COF=α°,則∠BOE=.
(2)當(dāng)點C與點E.F在直線AB的兩旁(如圖2所示)時,(1)中第②式的結(jié)論是否仍然成立?請給出你的結(jié)論并說明理由.
【答案】(1)①50°,②2α;(2)成立.理由見詳解.
【解析】
(1)根據(jù)角平分線的定義得到∠EOF=∠AOE,而∠EOF=90°-∠COF,即90°-∠COF=
∠AOE,再根據(jù)鄰補角的定義得到90°-∠COF=(180°-∠BOE),整理得∠BOE=2∠COF;所以①當(dāng)∠COF=25°時,∠BOE=2×25°=50°;②當(dāng)∠COF=α?xí)r,∠BOE=2α;
(2)第②式的結(jié)論仍然成立.證明方法與前面一樣.
解:(1)∵OF是∠AOE的平分線,
∴∠EOF=∠AOE,
∵∠COE=90°,
∴∠EOF=90°-∠COF,
∴90°-∠COF=∠AOE,
而∠AOE+∠BOE=180°,
∴90°-∠COF=(180°-∠BOE),
∴∠BOE=2∠COF,
①當(dāng)∠COF=25°時,∠BOE=2×25°=50°;
②當(dāng)∠COF=α?xí)r,∠BOE=2α;
故答案為2α;
(2)第②式的結(jié)論仍然成立.理由如下:
∵OF是∠AOE的平分線,
∴∠EOF=∠AOE,
∵∠COE=90°,
∴∠EOF=90°-∠COF,
∠AOE+∠BOE=180°,
∴90°-∠COF=(180°-∠BOE),
∴∠BOE=2∠COF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列邊長相等的正多邊形的組合中,不能鑲嵌平面的是( )
A.正三角形和正方形B.正三角形和正六邊形
C.正方形和正八邊形D.正五邊形和正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法:①c=0;②該拋物線的對稱軸是直線x=-1;③當(dāng)x=1時,y=2a;④am2+bm+>0(m≠-1).其中正確的個數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為點B(0,3),其頂點為C,對稱軸為x=1,
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當(dāng)△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S,并求其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B、C是數(shù)軸上的三個點,且點C在A、B之間,它們對應(yīng)的數(shù)分別為xA、xB、xC.
(1)若AC=CB,則點C叫做線段AB的中點,已知C是AB的中點.
①若xA=1,xB=5,則xc= ;
②若xA=﹣1,xB=﹣5,則xC= ;
③一般的,將xC用xA和xB表示出來為xC= ;
④若xC=1,將點A向右平移5個單位,恰好與點B重合,則xA= ;
(2)若AC=λCB(其中λ>0).
①當(dāng)xA=﹣2,xB=4,λ=時,xC= .
②一般的,將xC用xA、xB和λ表示出來為xC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50元/人,非節(jié)假日打折售票,節(jié)假日按團隊人數(shù)分段定價售票,即人以下(含人)的團隊按原價售票;超過人的團隊,其中人仍按原價售票,超過人部分的游客打折售票.設(shè)某旅游團人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).與之間的函數(shù)圖象如圖所示.
(1)觀察圖象可知: ; ; ;
(2)直接寫出,與之間的函數(shù)關(guān)系式;
(3)某旅行社導(dǎo)游王娜于5月1日帶團,5月20日(非節(jié)假日)帶團都到該景區(qū)旅游,共付門票款1900元,,兩個團隊合計50人,求,兩個團隊各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從A點到B點經(jīng)過的路線長是( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象和性質(zhì)進行了探究,探究過程如下:
()自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值如下表:
其中,__________.
()根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請你畫出該函數(shù)圖象剩下的部分.
()觀察函數(shù)圖象,寫出一條性質(zhì)__________.
()進一步探究函數(shù)圖象發(fā)現(xiàn):
①方程有__________個實數(shù)根.
②關(guān)于的方程有個實數(shù)根時,的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明家的住房結(jié)構(gòu)平面圖(單位:米),他打算把臥室以外的部分都鋪上地磚.
(1)若鋪地磚的價格為80元/平方米,那么鋪地磚需要花多少錢?(用代數(shù)式表示)
(2)已知房屋的高為h米,現(xiàn)需要在客廳和臥室的墻壁上貼壁紙,那么需要多少平方米的壁紙(計算時不扣除門,窗所占的面積)?(用代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com