【題目】如圖,等邊三角形ABC邊長(zhǎng)是定值,點(diǎn)O是它的外心,過點(diǎn)O任意作一條直線分別交AB,BC于點(diǎn)D,E.將BDE沿直線DE折疊,得到B′DE,若B′D,B′E分別交AC于點(diǎn)F,G,連接OF,OG,則下列判斷錯(cuò)誤的是( 。

A. ADF≌△CGE

B. B′FG的周長(zhǎng)是一個(gè)定值

C. 四邊形FOEC的面積是一個(gè)定值

D. 四邊形OGB'F的面積是一個(gè)定值

【答案】D

【解析】A、根據(jù)等邊三角形ABC的外心的性質(zhì)可知:AO平分∠BAC,根據(jù)角平分線的定理和逆定理得:FO平分∠DFG,由外角的性質(zhì)可證明∠DOF=60°,同理可得∠EOG=60°,FOG=60°=DOF=EOG,可證明DOF≌△GOF≌△GOE,OAD≌△OCG,OAF≌△OCE,可得AD=CG,AF=CE,從而得ADF≌△CGE;

B、根據(jù)DOF≌△GOF≌△GOE,得DF=GF=GE,所以ADF≌△B'GF≌△CGE,可得結(jié)論;

C、根據(jù)S四邊形FOEC=SOCF+SOCE,依次換成面積相等的三角形,可得結(jié)論為:SAOC=SABC(定值),可作判斷;

D、方法同C,將S四邊形OGB'F=SOAC-SOFG,根據(jù)SOFG=FGOH,F(xiàn)G變化,故OFG的面積變化,從而四邊形OGB'F的面積也變化,可作判斷.

A、連接OA、OC,

∵點(diǎn)O是等邊三角形ABC的外心,

AO平分∠BAC,

∴點(diǎn)OAB、AC的距離相等,

由折疊得:DO平分∠BDB',

∴點(diǎn)OAB、DB'的距離相等,

∴點(diǎn)ODB'、AC的距離相等,

FO平分∠DFG,

DFO=OFG=FAD+ADF),

由折疊得:∠BDE=ODF=DAF+AFD),

∴∠OFD+ODF=FAD+ADF+DAF+AFD)=120°,

∴∠DOF=60°,

同理可得∠EOG=60°,

∴∠FOG=60°=DOF=EOG,

∴△DOF≌△GOF≌△GOE,

OD=OG,OE=OF,

OGF=ODF=ODB,OFG=OEG=OEB,

∴△OAD≌△OCG,OAF≌△OCE,

AD=CG,AF=CE,

∴△ADF≌△CGE,

故選項(xiàng)A正確;

B、∵△DOF≌△GOF≌△GOE,

DF=GF=GE,

∴△ADFB'GF≌△CGE,

B'G=AD,

∴△B'FG的周長(zhǎng)=FG+B'F+B'G=FG+AF+CG=AC(定值),

故選項(xiàng)B正確;

C、S四邊形FOEC=SOCF+SOCE=SOCF+SOAF=SAOC=SABC(定值),

故選項(xiàng)C正確;

D、S四邊形OGB'F=SOFG+SB'GF=SOFD+ADF=S四邊形OFAD=SOAD+SOAF=SOCG+SOAF=SOAC-SOFG

OOHACH,

SOFG=FGOH,

由于OH是定值,FG變化,故OFG的面積變化,從而四邊形OGB'F的面積也變化,

故選項(xiàng)D不一定正確;

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形中,,線段上有動(dòng)點(diǎn),過作直線邊于點(diǎn),并使得

當(dāng)重合時(shí),求的長(zhǎng);

在直線上是否存在一點(diǎn),使得是等腰直角三角形?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形的邊長(zhǎng)為厘米,對(duì)角線上的兩個(gè)動(dòng)點(diǎn).點(diǎn)從點(diǎn),點(diǎn)從點(diǎn)同時(shí)出發(fā),沿對(duì)角線以厘米/秒的相同速度運(yùn)動(dòng),過的直角邊于,過的直角邊于,連接,.設(shè)、、圍成的圖形面積為,,圍成的圖形面積為這里規(guī)定:線段的面積為到達(dá),到達(dá)停止.若的運(yùn)動(dòng)時(shí)間為秒,解答下列問題:

如圖,判斷四邊形是什么四邊形,并證明;

當(dāng)時(shí),求為何值時(shí),

的和,試用的代數(shù)式表示.(如圖為備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有2個(gè)信封,每個(gè)信封內(nèi)各裝有四張卡片,其中一個(gè)信封內(nèi)的四張卡片上分別寫有1、2、3、4四個(gè)數(shù),另一個(gè)信封內(nèi)的四張卡片分別寫有5、6、7、8四個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個(gè)數(shù)相乘,如果得到的積大于20,則甲獲勝,否則乙獲勝.

(1)請(qǐng)你通過列表(或畫樹狀圖)計(jì)算甲獲勝的概率

(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB=12,ACABBDAB,AC=BD=8點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),ACPBPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

2)如圖2,將圖1中的ACAB,BDAB改為CAB=DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC=8,BAC=90,直線l與以AB為直徑的⊙O相切于點(diǎn)B,點(diǎn)D是直線l上任意一動(dòng)點(diǎn),連結(jié)DA交⊙O點(diǎn)E.

(1)當(dāng)點(diǎn)DAB上方且BD=6時(shí),求AE的長(zhǎng);

(2)當(dāng)CE恰好與⊙O相切時(shí),求BD的長(zhǎng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,B=30°,邊AB的垂直平分線DEAB于點(diǎn)E,交BC于點(diǎn)D.CD=3,則BC的長(zhǎng)為(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,相交于點(diǎn),平分于點(diǎn),若,則________

查看答案和解析>>

同步練習(xí)冊(cè)答案