如圖,正方形網(wǎng)格中的△ABC,若小方格邊長(zhǎng)為1.
(1)求△ABC的周長(zhǎng);
(2)△ABC是直角三角形嗎?為什么?
考點(diǎn):勾股定理,勾股定理的逆定理
專(zhuān)題:
分析:(1)根據(jù)勾股定理分別求出AB、BC、AC的長(zhǎng),再根據(jù)三角形周長(zhǎng)的定義即可求解;
(2)根據(jù)勾股定理的逆定理判斷出三角形ABC的形狀.
解答:解:(1)由勾股定理可得,AC=
32+22
=
13

BC=
82+12
=
65
;
AB=
62+42
=
52
=2
13
;
故△ABC的周長(zhǎng)是
65
+3
13
;

(2)∵(
13
2+(2
13
2=(
65
2
∴AC2+AB2=BC2,
∴△ABC是直角三角形.
點(diǎn)評(píng):本題考查了勾股定理、勾股定理逆定理、三角形的周長(zhǎng),充分利用網(wǎng)格是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
1
x
-
2
y
=3,則
2xy
2x-y
的值是( 。
A、-3
B、
3
2
C、-
2
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值.
x2-1
x
÷(1-
2x-1
x
),其中x=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(1,0),BC=2.反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過(guò)點(diǎn)C. 
(1)求k的值;
(2)若OE∥AC交反比例函數(shù)的圖象于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F.求:
①四邊形AOFC的面積;
②點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
a
a+1
+
a-1
a2-1
.              
(2)(
1
3
27
-
24
-3
2
3
)•
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+c(a≠0)過(guò)O、B、C三點(diǎn),B、C坐標(biāo)分別為(10,0)和(
18
5
,-
24
5
),以O(shè)B為直徑的⊙A經(jīng)過(guò)C點(diǎn),直線l垂直x軸于B點(diǎn).
(1)求直線BC的解析式;
(2)求拋物線解析式及頂點(diǎn)坐標(biāo);
(3)點(diǎn)M是⊙A上一動(dòng)點(diǎn)(不同于O,B),過(guò)點(diǎn)M作⊙A的切線,交y軸于點(diǎn)E,交直線l于點(diǎn)F,設(shè)線段ME長(zhǎng)為m,MF長(zhǎng)為n,請(qǐng)猜想m•n的值,并證明你的結(jié)論;
(4)若點(diǎn)P從O出發(fā),以每秒一個(gè)單位的速度向點(diǎn)B作直線運(yùn)動(dòng),點(diǎn)Q同時(shí)從B出發(fā),以相同速度向點(diǎn)C作直線運(yùn)動(dòng),經(jīng)過(guò)t(0<t≤8)秒時(shí)恰好使△BPQ為等腰三角形,請(qǐng)求出滿(mǎn)足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察例題:∵
4
7
9
2<
7
<3

7
的整數(shù)部分為2,小數(shù)部分為
7
-2

請(qǐng)你觀察上述規(guī)律后解決下面的問(wèn)題:
(1)規(guī)定用符號(hào)[m]表示實(shí)數(shù)m的整數(shù)部分
例如:[
2
3
]=0
,[3.14]=3
按此規(guī)定[
10
+1]=
 

(2)如果
3
的小數(shù)部分為a,
5
的小數(shù)部分為b,求
3
•a+
5
•b-8的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一,為此對(duì)某市部分學(xué)校的七年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了
 
名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù)
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)某市近12000名七年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,已知:在矩形ABCD的邊AD上有一點(diǎn)O,OA=
3
,以O(shè)為圓心,OA長(zhǎng)為半徑作圓,交AD于M,恰好與BD相切于H,過(guò)H作弦HP∥AB,弦HP=3.若點(diǎn)E是CD邊上一動(dòng)點(diǎn)(點(diǎn)E與C,D不重合),過(guò)E作直線EF∥BD交BC于F,再把△CEF沿著動(dòng)直線EF對(duì)折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為G.設(shè)CE=x,△EFG與矩形ABCD重疊部分的面積為S.
(1)求證:四邊形ABHP是菱形;
(2)問(wèn)△EFG的直角頂點(diǎn)G能落在⊙O上嗎?若能,求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
(3)求S與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出FG與⊙O相切時(shí),S的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案