(1)設(shè)(x-3)2+|y+1|=0,求代數(shù)式x+y的值;
(2)設(shè)a為最小的正整數(shù),b是最大的負(fù)整數(shù),c是絕對(duì)值最小的數(shù),d是倒數(shù)等于本身的有理數(shù),則a+b+c+d=?
(3)已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B;
(4)(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2;
(5)多項(xiàng)式(a-2)x+(2b+1)xy+y3-7是關(guān)于x,y的多項(xiàng)式,若該多項(xiàng)式不含二次項(xiàng)和一次項(xiàng),求3a+2b的值.
解:(1)依題意,得
x-3=0,y+1=0,
解得,x=3,y=-1,
則x+y=3-1=2,即代數(shù)式(x+y)的值是2;
(2)根據(jù)題意得:a=1,b=-1,c=0,d=±1,則a+b+c+d=±1;
(3)A-B=4x
2-4xy+y
2-x
2-xy+5y
2=3x
2-5xy+6y
2.
(4)(3x
2y-2xy
2)-(xy
2-2x
2y)=3x
2y-2xy
2-xy
2+2x
2y=5x
2y-3xy
2=xy(5x-3y),
把x=-1,y=2代入,得
原式=-2(-5-6)=22;
(5)解:∵多項(xiàng)式(a-2)x+(2b+1)xy+y
3-7是關(guān)于x,y的多項(xiàng)式,該多項(xiàng)式不含二次項(xiàng)和一次項(xiàng),
∴由題意得出:a-2=0,2b+1=0,
解得:a=2,b=-
,
∴3a+2b=3×2+2×(-
)=6-1=5.
分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)求得x、y的值,然后求得代數(shù)式x+y的值;
(2)根據(jù)最小的正整數(shù)為1,最大的負(fù)整數(shù)為-1,絕對(duì)值最小的有理數(shù)為0,以及倒數(shù)等于本身的數(shù)為1或-1,確定出a,b,c,d的值,即可求出a+b+c+d的值;
(3)把A、B的值代入(A-B),然后合并同類項(xiàng);
(4)先化簡(jiǎn),然后代入求值;
(5)根據(jù)多項(xiàng)式中不含二次項(xiàng)和一次項(xiàng)得出a-2=0,2b+1=0,求出a,b的值,求出3a+2b的值即可.
點(diǎn)評(píng):本題綜合考查了整式的加減、多項(xiàng)式以及多項(xiàng)式求值等知識(shí)點(diǎn).代數(shù)式的求值:求代數(shù)式的值可以直接代入、計(jì)算.如果給出的代數(shù)式可以化簡(jiǎn),要先化簡(jiǎn)再求值.