【題目】已知二次函數(shù)的圖象如圖所示,分析下列四個(gè)結(jié)論:①abc0;②b2-4ac0;③;④a+b+c0.其中正確的結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

①由拋物線(xiàn)的開(kāi)口方向,拋物線(xiàn)與y軸交點(diǎn)的位置、對(duì)稱(chēng)軸即可確定a、bc的符號(hào),即得abc的符號(hào);
②由拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)判斷即可;

③由 ,a0,得到b2a,所以2a-b0

④由當(dāng)x=1時(shí)y0,可得出a+b+c0

解:①∵二次函數(shù)圖象開(kāi)口向下,對(duì)稱(chēng)軸在y軸左側(cè),與y軸交于正半軸,
a0,,c0,

b0,
abc0,結(jié)論①錯(cuò)誤;
②∵二次函數(shù)圖象與x軸有兩個(gè)交點(diǎn),
b2-4ac0,結(jié)論②正確;

③∵a0,
b2a,
2a-b0,結(jié)論③錯(cuò)誤;
④∵當(dāng)x=1時(shí),y0
a+b+c0,結(jié)論④正確.
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PNMN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?

(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明到商場(chǎng)購(gòu)買(mǎi)某個(gè)牌子的鉛筆支,用了元(為整數(shù)).后來(lái)他又去商場(chǎng)時(shí),發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買(mǎi)了支鉛筆,用了元錢(qián),那么小明兩次共買(mǎi)了鉛筆________支.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是ED.

(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);

(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙OBC于點(diǎn)D.過(guò)點(diǎn)DEFAC,垂足為E,且交AB的延長(zhǎng)線(xiàn)于點(diǎn)F

1)求證:EF是⊙O的切線(xiàn);

2)已知AB4,AE3.求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABO,點(diǎn)B軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經(jīng)過(guò)OA的中點(diǎn)C,交AB于點(diǎn)D.

1)求反比例函數(shù)的表達(dá)式;

2)求△OCD的面積;

3)點(diǎn)P軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出使△OCP為直角三角形的點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3×3的方格紙中,點(diǎn)A、B、C、D、EF分別位于如圖所示的小正方形的頂點(diǎn)上.

1】從A、D、EF四點(diǎn)中任意取一點(diǎn),以所取的這一點(diǎn)及B、C為頂點(diǎn)三角形,則所畫(huà)三角形是等腰三角形的概率是 ;

2】從A、DE、F四點(diǎn)中先后任意取兩個(gè)不同的點(diǎn),以所取的這兩點(diǎn)及B、C為頂點(diǎn)畫(huà)四邊形,求所畫(huà)四邊形是平行四邊形的概率(用樹(shù)狀圖或列表求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳統(tǒng)的端午節(jié)即將來(lái)臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠(chǎng)價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,yx滿(mǎn)足如下關(guān)系:

y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來(lái)刻畫(huà).若李明第x天創(chuàng)造的利潤(rùn)為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠(chǎng)價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①拋物線(xiàn)yax2+bx+4a≠0)與x軸,y軸分別交于點(diǎn)A(﹣1,0),B40),點(diǎn)C三點(diǎn).

1)試求拋物線(xiàn)的解析式;

2)點(diǎn)D3,m)在第一象限的拋物線(xiàn)上,連接BC,BD.試問(wèn),在對(duì)稱(chēng)軸左側(cè)的拋物線(xiàn)上是否存在一點(diǎn)P,滿(mǎn)足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)N在拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線(xiàn)上,當(dāng)以M、NB、C為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案