精英家教網(wǎng)等邊△ABC,AD為它的高線,如圖所示,若它的邊長為2,則它的周長為
 
,AD=
 
,BD:AD:AB=
 
 
 
分析:根據(jù)等邊三角形三線合一的性質(zhì)可求得D為BC的中點(diǎn),已知AB、BD的長,根據(jù)勾股定理即可求得AD的長,即可求BD:AD:AB.
解答:解:三角形三邊長相等,∴三角形周長為邊長的3倍等于6,
∵等邊三角形三線合一,∴D為BC的中點(diǎn),
即BD=DC=1,∴AD=
AB2-BD2
=
3

故答案為 6、
3
、1:
3
:2.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了等邊三角形三邊相等的性質(zhì),本題中根據(jù)勾股定理計(jì)算AD的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012年北師大版初中數(shù)學(xué)九年級(jí)上1.2直角三角形練習(xí)卷(解析版) 題型:填空題

等邊△ABC,AD為它的高線,如圖所示,若它的邊長為2,則它的周長為_____,AD=_______,BD∶AD∶AB=__________∶__________∶__________.

  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

等邊△ABC,AD為它的高線,如圖所示,若它的邊長為2,則它的周長為________,AD=________,BD:AD:AB=________:________:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《1.2 直角三角形》2010年同步練習(xí)1(解析版) 題型:填空題

等邊△ABC,AD為它的高線,如圖所示,若它的邊長為2,則它的周長為    ,AD=    ,BD:AD:AB=           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等邊△ABCAD為它的高線,如圖所示,若它的邊長為2,則它的周長為__________,AD=__________,BDADAB=__________∶__________∶__________.

       

             

查看答案和解析>>

同步練習(xí)冊(cè)答案