【題目】如圖,已知數(shù)軸上點A表示的為8,B是數(shù)軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒.

(1)寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) (用含t的代數(shù)式表示);

(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、H同時出發(fā),問點P運動多少秒時追上點H?

【答案】(1)﹣6,8﹣5t;(2)點P運動7秒時追上點H.

【解析】

試題分析:(1)先計算出線段OB,則可得到出點B表示的數(shù);利用速度公式得到PA=5t,易得P點表示的數(shù)為8﹣5t;

(2)點P比點H要多運動14個單位,利用路程相差14列方程得5t=14+3t,然后解方程即可.

解:(1)OA=8,AB=14,

OB=6

點B表示的數(shù)為﹣6,

PA=5t,

P點表示的數(shù)為8﹣5t,

故答案為﹣6,8﹣5t;

(2)根據(jù)題意得5t=14+3t,

解得t=7.

答:點P運動7秒時追上點H.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種面粉的質(zhì)量標(biāo)識為“20±0.3㎏”,則下列面粉中合格的是(
A.19.1㎏
B.19.9㎏
C.20.5㎏
D.20.7㎏

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是 . (填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣2、0、1、﹣1這四個數(shù)中,最大的有理數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖1,把△ABC沿DE折疊,使點A落在點A’處,試探索∠1+∠2與∠A的關(guān)系.(不必證明).

(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點A與點I重合,若∠1+∠2=130°,求∠BIC的度數(shù);

(3)如圖3,在銳角△ABC中,BF⊥AC于點F,CG⊥AB于點G,BF、CG交于點H,把△ABC折疊使點A和點H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王剛在研究性學(xué)習(xí)活動中,對自己家所在的小區(qū)進行調(diào)查后發(fā)現(xiàn),小區(qū)汽車入口寬AB為3.2m,在入口的一側(cè)安裝了停止桿CD,其中AE為支架.當(dāng)停止桿仰起并與地面成60°角時,停止桿的端點C恰好與地面接觸,此時CA為0.7m.在此狀態(tài)下,若一輛貨車高3m,寬2.5m,入口兩側(cè)不能通車,那么這輛貨車在不碰桿的情況下,能從入口內(nèi)通過嗎?請你通過計算說明.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,OB是∠AOC的平分線,OD是∠COE的平分線.

(1)若∠AOB=50°,DOE=35°,求∠BOD的度數(shù);

(2)若∠AOE=160°,COD=40°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(0,–3),(2,–3).

(1)求拋物線的表達式;

(2)求拋物線的頂點坐標(biāo)及與x軸交點的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處.

(1)求∠A的度數(shù);

(2)若,求△AEC的面積.

查看答案和解析>>

同步練習(xí)冊答案