(2012•臺州)請你規(guī)定一種適合任意非零實數(shù)a,b的新運算“a⊕b”,使得下列算式成立:
1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-
7
6
,(-3)⊕5=5⊕(-3)=-
4
15
,…
你規(guī)定的新運算a⊕b=
2a+2b
ab
2a+2b
ab
(用a,b的一個代數(shù)式表示).
分析:由題中的新定義,將已知的等式結(jié)果變形后,總結(jié)出一般性的規(guī)律,即可用a與b表示出新運算a⊕b.
解答:解:根據(jù)題意可得:
1⊕2=2⊕1=3=
2
1
+
2
2

(-3)⊕(-4)=(-4)⊕(-3)=-
7
6
=
2
-3
+
2
-4
,
(-3)⊕5=5⊕(-3)=-
4
15
=
2
-3
+
2
5
,
則a⊕b=
2
a
+
2
b
=
2a+2b
ab

故答案為:
2a+2b
ab
點評:此題考查了有理數(shù)的混合運算,屬于新定義的題型,其中弄清題意,找出一般性的規(guī)律是解本題得關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)某地為提倡節(jié)約用水,準(zhǔn)備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點.
(1)根據(jù)上述定義,當(dāng)m=2,n=2時,如圖1,線段BC與線段OA的距離是
2
2
;當(dāng)m=5,n=2時,如圖2,線段BC與線段OA的距離為
5
5
;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)某汽車在剎車后行駛的距離s(單位:米)與時間t(單位:秒)之間的關(guān)系得部分?jǐn)?shù)據(jù)如下表:
時間t(秒) 0 0.2 0.4 0.6 0.8 1.0 1.2
行駛距離s(米) 0 2.8 5.2 7.2 8.8 10 10.8
假設(shè)這種變化規(guī)律一直延續(xù)到汽車停止.
(1)根據(jù)這些數(shù)據(jù)在給出的坐標(biāo)系中畫出相應(yīng)的點;
(2)選擇適當(dāng)?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)①剎車后汽車行駛了多長距離才停止?
②當(dāng)t分別為t1,t2(t1<t2)時,對應(yīng)s的值分別為s1,s2,請比較
s1
t1
s2
t2
的大小,并解釋比較結(jié)果的實際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當(dāng)點D是△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案