【題目】如圖,將一個邊長分別為8,16的矩形紙片ABCD沿EF折疊,使C點與A點重合,則EF與AF的比值為( )
A.4 B.C.2D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),且頂點坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達式;
(2)設(shè)F(t,0)為x軸正半軸上一點,將拋物線M繞點F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點時,結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點O與坐標(biāo)原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是AB上一點,以O(shè)A為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.
(1)求證:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用天時間,采用每天降低水位以減少捕撈成本的辦法.對水庫中某種鮮魚進行捕撈銷售,第天(且為整數(shù))的捕撈與銷售的相關(guān)信息如下:
鮮魚銷售單價(元) | |
單位捕撈成本(元) | |
捕撈量 |
假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出.
(1)求第天的收入(元)與(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入日銷售額-日捕撈成本)
(2)在第幾天取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的一個外角.
實驗與操作:根據(jù)要求進行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)
(1)作的平分線;
(2)作線段的垂直平分線,與交于點,與邊交于點,連接;
(3)在(1)和(2)的條件下,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖中的曲線是反比例函數(shù)(為常數(shù))圖象的一支.
這個反比例函數(shù)圖象的另一支在第幾象限?常數(shù)的取值范圍是什么?
若該函數(shù)的圖象與正比例函數(shù)的圖象在第一象內(nèi)限的交點為,過點作軸的垂線,垂足為,當(dāng)的面積為時,求點的坐標(biāo)及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于C點,且B(3,0).
(1)求拋物線的函數(shù)關(guān)系式;
(2)求點A和頂點D的坐標(biāo);
(3)若點M是拋物線對稱軸上的一個動點,求CM+AM的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com