解:(1)2x
2-5x-3=0,
變形得:x
2-
x=
,
配方得:x
2-
x+
=
+
,即(x-
)
2=
,
開方得:x-
=±
,
則x
1=3,x
2=-
;
(2)3x(x-1)=2-2x,
變形移項(xiàng)得:3x(x-1)+2(x-1)=0,
分解因式得:(x-1)(3x-2)=0,
可得x-1=0或3x-2=0,
解得:x
1=1,x
2=
;
(3)x
2-2
x+6=0,
這里a=1,b=-2
,c=6,
∵△=b
2-4ac=20-24=-4<0,
∴此方程無實(shí)數(shù)根;
(4)2x
2+5x-12=0,
因式分解得:(2x-3)(x+4)=0,
可得2x-3=0或x+4=0,
解得:x
1=
,x
2=-4.
分析:(1)方程兩邊除以2將二次項(xiàng)系數(shù)化為1,常數(shù)項(xiàng)移到方程右邊,然后左右兩邊都加上一次項(xiàng)系數(shù)一半的平方,左邊化為完全平方式,右邊合并為一個(gè)非負(fù)常數(shù),開方轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
(2)將方程右邊看做一個(gè)整體,提前-2移項(xiàng)后,提前公因數(shù)分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
(3)找出a,b及c的值,計(jì)算出根的判別式的值小于0,可得出此方程無實(shí)數(shù)根;
(4)利用十字相乘法將方程左邊的多項(xiàng)式分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解.
點(diǎn)評(píng):此題考查了解一元二次方程-因式分解法,配方法,公式法,利用因式分解法解方程時(shí),首先將方程右邊化為0,左邊化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解.