在△中,分別是邊上的點,邊的等分點,,.如圖1,若,,則∠+∠+∠+ +∠            度;如圖2,若,,則∠+∠+∠+ +∠           (用含,的式子表示).
,.

試題分析:∵,,∠A=∠A,
∴△CEF∽△CAB,
∴∠CFE=∠B,,
∴EF∥AB,
∵P1、P2、…、Pn是邊BC的n等分點,
∴EF與BP1平行且相等,EF與P1P2平行且相等,…,EF與Pn-1C平行且相等,
∴四邊形FBP1E、FP1P2E、…、FPn-1AE都是平行四邊形,
∴∠E P1 F =∠BFP1,∠E P2F=∠P1FP2,…,∠ E Pn-1 F =∠P n-2FP n-1,∠BFP n-1=∠C,
∴∠+∠+∠+ +∠∠C.
,,
∴∠C=,
∴∠+∠+∠+ +∠.
∴當(dāng),,
+∠+∠+ +∠ .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,若以原點為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長是原五邊形對應(yīng)邊長的3倍,請在下圖網(wǎng)格中畫出放大后的五邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠BAC=900,AD⊥BC,則圖中相似的三角形有            (寫出一對即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

觀察計算:
當(dāng)時,的大小關(guān)系是_________________.
當(dāng),時,的大小關(guān)系是_________________.
探究證明:
如圖所示,為圓O的內(nèi)接三角形,為直徑,過C作于D,設(shè),BD=b.

(1)分別用表示線段OC,CD­;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論:
根據(jù)上面的觀察計算、探究證明,你能得出的大小關(guān)系是:______________.
實踐應(yīng)用:
要制作面積為4平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結(jié)CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結(jié)DF.給出以下四個結(jié)論:①;②點F是GE的中點;③AF=AB;④S△ABC ="5" S△BDF,其中正確的結(jié)論序號是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,△ABC∽△DEF 其相似比為K , 則一次函數(shù)的圖像與兩坐標(biāo)軸圍成的三角形面積是(   )
A.0.5B.4C.2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=3,BC=4,點P在BC邊上運動,連接DP,過點A作AE⊥DP,垂足為E,設(shè)DP=x,AE=y,則能反映y與x之間函數(shù)關(guān)系的大致圖象是


A.               B.             C.               D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在比例尺為1:2000的地圖上測得A、B兩地間的圖上距離為5cm,則A、B兩地間的實際距離為(   )
A.10m;    B.25m;    C.100m;  D.10000m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ACM中,△ABC、△BDE和△DFG都是等邊三角形,且點E、G在△ACM邊CM上,設(shè)等邊△ABC、△BDE和△DFG的面積分別為S1、S2、S3,若S1=9,S3=1,則S2=     

查看答案和解析>>

同步練習(xí)冊答案