【題目】如圖,在矩形ABCD中,BC=24cm,P、Q、M、N分別從A、B、C、D出發(fā),沿AD、BC、CB、DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止、已知在相同時(shí)間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm,
(1)當(dāng)x為何值時(shí),點(diǎn)P、N重合;
(2)當(dāng)x為何值時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形.
【答案】(1)x=4時(shí)點(diǎn)P與點(diǎn)N重合;(2)當(dāng)x=2或時(shí)四邊形NQMP是平行四邊形.
【解析】試題分析:(1)P、N兩點(diǎn)重合,即AP+DN=AD=BC,聯(lián)立方程解答即可;
(2)把P、N兩點(diǎn)分兩種情況討論,點(diǎn)P在點(diǎn)N的左側(cè)或點(diǎn)P在點(diǎn)N的右側(cè),進(jìn)一步利用平行四邊形的性質(zhì)聯(lián)立方程解答即可.
試題解析:(1)當(dāng)點(diǎn)P與點(diǎn)N重合時(shí),由x2+2x=24,得x1=4、x2=-6(舍去),
所以x=4時(shí)點(diǎn)P與點(diǎn)N重合.
(2)因?yàn)楫?dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),x2=24,解得: ,
∴此時(shí)M點(diǎn)和Q點(diǎn)還未相遇,所以點(diǎn)Q只能在點(diǎn)M的左側(cè),
①如圖1,當(dāng)點(diǎn)P在點(diǎn)N的左側(cè)時(shí),由24-(x+3x)=24-(2x+x2),解得x1=0(舍去),x2=2;故當(dāng)x=2時(shí)四邊形PQMN是平行四邊形;
②如圖2,當(dāng)點(diǎn)P在點(diǎn)N的右側(cè)時(shí),由24-(x+3x)=(2x+x2)-24,解得,
(舍去);故當(dāng)時(shí)四邊形NQMP是平行四邊形;
綜上:當(dāng)x=2或時(shí)四邊形NQMP是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù)有40個(gè),把它分成六組,第一組到第四組的頻數(shù)分別是5,10,6,7,第五組的頻率是0.2,故第六組的頻數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無(wú)法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列各題.
(1)先化簡(jiǎn),再求值: ÷,其中x=+1.
(2)分解因式:8(x2-2y2)-x(7x+y)+xy.
(3)解不等式≤-1,并把解集表示在數(shù)軸上.
(4)解不等式組并將解集在數(shù)軸上表示出來(lái).
(5)解方程: +=4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AE⊥BC于點(diǎn)E,AE=BE,D是AE上的一點(diǎn),且DE=CE,連接BD,CD.
(1)試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖2,若將△DCE繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)上月的營(yíng)業(yè)額是a萬(wàn)元,本月營(yíng)業(yè)額為500萬(wàn)元,比上月增長(zhǎng)15%,那么可列方程為( )
A.15%a=500B.(1+15%)a=500
C.15%(1+a)=500D.1+15%a=500
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果∠A=30°,則∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2與∠3的大小關(guān)系是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com