【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長.
【答案】(1)35°;(2).
【解析】試題分析:根據(jù)OD∥BC,∠DOA=∠B=70°,根據(jù)OA=OD可得∠DAO=∠ADO=55°,根據(jù)AB為直徑可求出∠CAD的度數(shù);根據(jù)Rt△ACB得出BC的長度,根據(jù)O為AB的中點,OD∥BC,從而得出OE和OD的長度,根據(jù)DE=OD-OE得出答案.
試題解析:(1)∵OD∥BC,∴∠DOA=∠B=70°. 又∵OA=OD,∴∠DAO=∠ADO=55°.
∵AB是直徑,∴∠ACB=90°,∴∠CAB=20° ∴∠CAD=35°.
(2)在Rt△ACB中,BC=. ∵圓心O是直徑AB的中點,OD∥BC,
∴OE=BC=又OD=AB=2, ∴DE=OD-OE=2-
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題共10分)AB和AC 相交于點A, BD和CD相交于點D,探究∠BDC與∠B 、 ∠C、∠BAC的關(guān)系.
小明是這樣做的:
解:以點A為端點作射線AD.
∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD.
同理∠2=∠C+∠CAD.
∴∠1+∠2=∠B+∠BAD+∠C+∠CAD.即∠BDC=∠B+∠C+∠BAC.
小英的思路是:延長BD交AC于點E.
(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結(jié)論.
(2)按照上面的思路解決如下問題:如圖:在△ABC中,BE、CD分別是∠ABC∠ACB的角平分線,交AC于E,交AB于D.BE、CD相交于點O,∠A=60°.求∠BOC的度數(shù).
(3)如圖:△ABC中,BO、CO分別是∠ABC與∠ACB的角平分線,且BO、CO相交于點O.猜想∠BOC與∠A有怎樣的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是( )
A.乘坐公共汽車恰好有空座B.購買一張彩票,中獎
C.同位角相等D.三角形的三條高所在的直線交于一點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.+a是正數(shù)
B.﹣a是負數(shù)
C.a與﹣a互為相反數(shù)
D.a與﹣a一定有一個是負數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中適合采用抽樣調(diào)查的是( )
A.調(diào)查本班同學(xué)的身高情況B.飛機起飛前,對相關(guān)零部件進行檢查
C.調(diào)查春節(jié)聯(lián)歡晚會的收視率D.選出某班短跑跑得最快的學(xué)生參加學(xué)校比賽
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標系xoy中,O是坐標原點,點A在x正半軸上,OA=cm,點B在y軸的正半軸上,OB=12cm,動點P從點O開始沿OA以cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BO以2cm/s的速度向點O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點M,當t為何值時,PM與⊙O′相切?
(3)是否存在△RPQ為等腰三角形?若存在,請直接寫出出的t值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com