【題目】如圖,直線ABCD相交于點(diǎn)O,OEABOFCD,OP是∠BOC的平分線,

⑴寫出所有∠EOC的補(bǔ)角 ;

⑵如果∠AOD=40°,求∠POF的度數(shù).

【答案】1)∠EOD,∠AOF都是∠EOC的補(bǔ)角;(2)∠POD=70°

【解析】

1)首先根據(jù)垂直定義可得∠AOE=DOF=90°,然后再證明∠EOD=AOF,根據(jù)補(bǔ)角定義可得∠EOD,∠AOF都是∠EOC的補(bǔ)角;

2)根據(jù)對頂角相等,可得∠BOC的度數(shù),根據(jù)角平分線的定義,可得∠COP,根據(jù)余角的定義,可得答案.

1)∵OEAB,OFCD,

∴∠AOE=DOF=90°,

∴∠EOA+AOD=DOF+AOD

即:∠EOD=AOF,

∵∠EOC+EOD=180°,

∴∠AOF+EOC=180°,

∴∠EOD,∠AOF都是∠EOC的補(bǔ)角;

2)由對頂角相等,得∠BOC=AOD=40°

OP是∠BOC的平分線,得∠COP=BOC=20°

由余角的定義,得∠POD=COD-COP=90°-20°=70°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足|b6|0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著OCBAO的線路移動(dòng).

1a______________,b_____________,點(diǎn)B的坐標(biāo)為_______________;

2)當(dāng)點(diǎn)P移動(dòng)4秒時(shí),請指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);

3)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸的距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABAC,PBPC,給出下面結(jié)論:①BP=CP,②EBEC,③ADBC,④EA平分∠BEC,其中正確的結(jié)論有( 。

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.

(1)求證:△ABC是等腰三角形;

(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 l 上有 A、B 兩點(diǎn),AB=12cm,點(diǎn) O 是線段 AB 上的一點(diǎn),OA=2OB.

1OA=_______cmOB=________cm;

2)若點(diǎn) C 是線段AB的中點(diǎn),求線段 CO 的長;

3)若動(dòng)點(diǎn) PQ分別從 A、B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為2 厘米/秒,點(diǎn)Q的速度為1厘米/秒,設(shè)運(yùn)動(dòng)時(shí)間為x秒,當(dāng) x=_____秒時(shí),PQ=4cm;

4)有兩條射線 OC、OD 均從射線 OA 同時(shí)繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),OC旋轉(zhuǎn)的速度為6/秒,OD 旋轉(zhuǎn)的速度為2/.當(dāng)OCOD第一次重合時(shí),OCOD 同時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)間為 t 秒,當(dāng)t為何值時(shí),射線OCOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永祚寺雙塔又名凌霄雙塔,是山西省會(huì)太原現(xiàn)存古建筑中最高的建筑,位于太原市城區(qū)東南向山腳畔.?dāng)?shù)學(xué)活動(dòng)小組的同學(xué)對其中一個(gè)塔進(jìn)行了測量.測量方法如下:如圖所示間接測得該塔底部點(diǎn)B到地面上一點(diǎn)E的距離為48 m,塔的頂端為點(diǎn)AABCB,在點(diǎn)E處豎直放一根標(biāo)桿,其頂端為D,BE的延長線上找一點(diǎn)C使C,DA三點(diǎn)在同一直線上,測得CE2 m.

(1)方法1,已知標(biāo)桿DE2.2 m求該塔的高度;

(2)方法2測量得∠ACB47.5°,已知tan47.5°1.09,求該塔的高度;

(3)假如該塔的高度在方法1和方法2測得的結(jié)果之間你認(rèn)為該塔的高度大約是多少米?

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABCD,∠B20°,∠D110°

1)若∠E50°,請直接寫出∠F的度數(shù);

2)探索∠E與∠F之間滿足的數(shù)量關(guān)系,并說明理由;

3)如圖2,EP平分∠BEFFG平分∠EFD,FG的反向延長線交EP于點(diǎn)P,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

同步練習(xí)冊答案