【題目】(本題滿分10分)

【感受聯(lián)系】在初二的數(shù)學學習中,我們感受過等腰三角形與直角三角形的密切聯(lián)系.等腰三角形作底邊上的高線可轉化為直角三角形,直角三角形沿直角邊翻折可得到等腰三角形等等.

【探究發(fā)現(xiàn)】某同學運用這一聯(lián)系,發(fā)現(xiàn)了“30°角所對的直角邊等于斜邊的一半”.并給出了如下的部分探究過程,請你補充完整證明過程

已知:如圖,在中, °,°.

求證:

證明:

【靈活運用】該同學家有一張折疊方桌如圖①所示,方桌的主視圖如圖②.經(jīng)測得 ,將桌子放平,兩條桌腿叉開的角度.

求:桌面與地面的高度.

【答案】答案見解析

【解析】試題分析:(1)取斜邊中點,構造等邊三角形可證.

(2)O作,OEABE,OF⊥CD于點F,構造出30°直角三角形,利用特殊三角形性質(zhì)計算OE,OF長度.

試題解析:

【探究發(fā)現(xiàn)】

AB的中點D,連接CD,

Rt△ABC中,點DAB的中點,

CD=DB= AB ,

∵∠C=90°,A=30°,

∴∠B=60°,

∴△DBC是等邊三角形 ,

BC=CD=DB,

BC= AB.

【靈活運用】

O作,OEABE,OF⊥CD于點F,

OA=OB,∠AOB=120°,

∠A=30° ,

RtAOE中,OA=90,A=30°, ,

OE=45 ,

同理:OF=15.

所以,桌面與地面的高度是60cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,正確的個數(shù)是(

①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④1,,2是一組勾股數(shù);⑤命題若兩個實數(shù)相等,則它們的平方相等的逆命題成立⑥一次函數(shù)=kx+b,若k>0,b<0,那么它的圖象過第一、二、三象限;⑦函數(shù)y=-6x+3是一次函數(shù),且y隨著x的增大而減;

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點P,試說明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠A=∠F,∠C=∠D,求證:BD∥EC,下面是不完整的說明過程,請將過程及其依據(jù)補充完整.

證明:∵∠A=∠F(已知)
∴AC∥ 
∴∠D=∠1
又∵∠C=∠D(已知)
∴∠1=
∴BD∥CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家統(tǒng)計局數(shù)據(jù):截至2019年底,中國大陸總人口為1400000000.將1400000000用科學記數(shù)法表示是(

A.14×108B.14×109C.1.4×108D.1.4×109

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一元二次方程x23x20的一個根是m,則代數(shù)式4m212m+2的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列從左到右的變形,屬于因式分解的是( )

A. (x+1)(x-1)=x2-1 B. m2+m-4=(m+3)(m-2)+2 C. x2+2x=x(x+2) D. x2-5x+6=x(x-5) +6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y2x128,下列說法正確的是(

A.圖象開口向下

B.x1時,yx的增大而減小

C.x1時,yx的增大而減小

D.圖象的對稱軸是直線x=﹣1

查看答案和解析>>

同步練習冊答案