【題目】如圖,在△ABC中,∠B=60°,過點(diǎn)C作CD∥AB,若∠ACD=60°,求證:△ABC是等邊三角形.
【答案】見解析.
【解析】
證法一:根據(jù)平行線的性質(zhì)可知,∠A=60°,所以∠ACB=60°,即可證明△ABC是等邊三角形.
證法二:根據(jù)平行線的性質(zhì)可知,∠B=60°,所以∠BCD=120°,∠ACB=60°,即可證明△ABC是等邊三角形.
證明:
證法一: ∵ CD∥AB,
∴ ∠A=∠ACD=60°.
∵ ∠B=60°,
在△ABC中,
∠ACB=180°-∠A-∠B=60°.
∴ ∠A=∠B=∠ACB.
∴ △ABC是等邊三角形.
證法二: ∵ CD∥AB,
∴ ∠B+∠BCD=180°.
∵ ∠B=60°,
∴ ∠BCD=120°.
∴ ∠ACB=∠BCD-∠ACB=60°.
在△ABC中,
∠A=180°-∠B-∠ACB=60°.
∴ ∠A=∠B=∠ACB.
∴ △ABC是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=CD,AD=BC,O為AC中點(diǎn),過O點(diǎn)的直線分別與AD、BC相交于點(diǎn)M、N,那么∠1與∠2有什么關(guān)系?請(qǐng)說明理由;
若過O點(diǎn)的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織了“熱愛憲法,捍衛(wèi)憲法”的知識(shí)競(jìng)賽,賽后發(fā)現(xiàn)所有學(xué)生的成績(jī)(總分100分)均不低于50分,為了解本次競(jìng)賽的成績(jī)分布情況,隨機(jī)抽取若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,并繪制了不完整的統(tǒng)計(jì)圖表,請(qǐng)你根據(jù)統(tǒng)計(jì)圖表解答下列問題.
學(xué)校若干名學(xué)生成績(jī)分布統(tǒng)計(jì)表
分?jǐn)?shù)段(成績(jī)?yōu)?/span>x分) | 頻數(shù) | 頻率 |
50≤x<60 | 16 | 0.08 |
60≤x<70 | a | 0.31 |
70≤x<80 | 72 | 0.36 |
80≤x<90 | c | d |
90≤x≤100 | 12 | b |
(1)此次抽樣調(diào)查的樣本容量是 ;
(2)寫出表中的a= ,b= ,c= ;
(3)補(bǔ)全學(xué)生成績(jī)分布直方圖;
(4)比賽按照分?jǐn)?shù)由高到低共設(shè)置一、二、三等獎(jiǎng),若有25%的參賽學(xué)生能獲得一等獎(jiǎng),則一等獎(jiǎng)的分?jǐn)?shù)線是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,任何一個(gè)無限循環(huán)小數(shù)都可以寫成分?jǐn)?shù)形式,現(xiàn)以無限循環(huán)小數(shù)0.為例進(jìn)行討論:設(shè)0.=x,由0.=0.777…可知,10x﹣x=7.﹣0.=7,即10x﹣x=7.解方程,得x=.于是,得0. = .則0.=____________;0.=____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣4,0),直線l∥x軸,交y軸于點(diǎn)C(0,3),點(diǎn)B(﹣4,3)在直線l上,將矩形OABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)α度,得到矩形OA′B′C′,此時(shí)直線OA′、B′C′分別與直線l相交于點(diǎn)P、Q.
(1)當(dāng)α=90°時(shí),點(diǎn)B′的坐標(biāo)為 .
(2)如圖2,當(dāng)點(diǎn)A′落在l上時(shí),點(diǎn)P的坐標(biāo)為 ;
(3)如圖3,當(dāng)矩形OA′B′C′的頂點(diǎn)B′落在l上時(shí).
①求OP的長(zhǎng)度;②S△OPB′的值是 .
(4)在矩形OABC旋轉(zhuǎn)的過程中(旋轉(zhuǎn)角0°<α≤180°),以O,P,B′,Q為頂點(diǎn)的四邊形能否成為平行四邊形?如果能,請(qǐng)直接寫出點(diǎn)B′和點(diǎn)P的坐標(biāo);如果不能,請(qǐng)簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩運(yùn)動(dòng)員在長(zhǎng)為的直道(,為直道兩端點(diǎn))上進(jìn)行勻速往返跑訓(xùn)練,兩人同時(shí)分別從點(diǎn),點(diǎn)起跑,甲從點(diǎn)起跑,到達(dá)點(diǎn)后,立即轉(zhuǎn)身跑向點(diǎn),到達(dá)點(diǎn)后,又立即轉(zhuǎn)身跑向點(diǎn)…乙從點(diǎn)起跑,到達(dá)點(diǎn)后,立即轉(zhuǎn)身跑向點(diǎn),到達(dá)點(diǎn)后,又立即轉(zhuǎn)身跑向點(diǎn)…若甲跑步的速度為,乙跑步的速度為,則起跑后內(nèi),兩人相遇的次數(shù)為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.且矩形的長(zhǎng)與寬的比為3:2,求這個(gè)矩形零件的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),求抽取出的2個(gè)家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AC與BD交于點(diǎn)O,E為CD延長(zhǎng)線上的一點(diǎn),且CD=DE,連接BE分別交AC、AD于點(diǎn)F、G,連接OG,則下列結(jié)論中一定成立的是( )
①OG=AB;②與△EGD全等的三角形共有5個(gè);③S四邊形ODGF>S△ABF;④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com