【題目】如圖,AB、BC、CD分別與⊙O切于E、F、G,且ABCD.連接OB、OC,延長CO交⊙O于點M,過點MMNOBCDN

1)求證:MN是⊙O的切線;

2)當OB6cm,OC8cm時,求⊙O的半徑及MN的長.

【答案】(1)見解析;(2)4.8cm,MN=9.6cm

【解析】

1)先由切線長定理和平行線的性質(zhì)可求出OBC+∠OCB90°,進而可求BOC90°,然后證明∠NMC=90°,即可證明MN是⊙O的切線;

2)連接OF,則OFBC,根據(jù)勾股定理就可以求出BC的長,然后根據(jù)△BOC的面積就可以求出⊙O的半徑,通過證明NMC∽△BOC,即可求出MN的長.

1)證明:AB、BCCD分別與O切于點E、F、G

∴∠OBCABCOCBDCB,

ABCD

∴∠ABC+∠DCB180°,

∴∠OBC+∠OCBABC+∠DCB)=×180°90°,

∴∠BOC180°﹣(OBC+∠OCB)=180°90°90°.

MNOB,

∴∠NMCBOC90°,

MNMC MOO的半徑,

MNO的切線;

2)解:連接OF,則OFBC,

由(1)知,BOC是直角三角形,

BC10,

SBOCOBOCBCOF,

∴6×810×OF,

OF4.8cm,

∴⊙O的半徑為4.8cm,

由(1)知,NCMBCO,NMCBOC90°,

∴△NMC∽△BOC

,即

MN9.6cm).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BCD90°,且BCDC,直線PQ經(jīng)過點D.設(shè)PDCα45°α135°),BAPQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E

1)當α125°時,ABC   °;

2)求證:ACCE;

3)若ABC的外心在其內(nèi)部,直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,DE平分∠ADB,交ABE,BF平分∠CBD,交CDF.

(1)求證:△ADE≌△CBF;

(2)當ADBD滿足什么關(guān)系時,四邊形DEBF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E是對角線BD上的一點,過點CCFBD,且CF=DE,連接AE、BFEF

1)求證:△ADE≌△BCF;

2)若BFCABE=90°,判斷四邊形ABFE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cmBC=12cm,動點P從點A開始沿邊ABB1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC2cm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),那么經(jīng)過(。┟耄倪呅APQC的面積最。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加快智慧校園建設(shè),某市準備為試點學校采購一批、兩種型號的一體機,經(jīng)過市場調(diào)查發(fā)現(xiàn),今年每套型一體機的價格比每套型一體機的價格多0.6萬元,且用960萬元恰好能購買500型一體機和200型一體機.

1)求今年每套型、型一體機的價格各是多少萬元

2)該市明年計劃采購型、型一體機1100套,考慮物價因素,預(yù)計明年每套型一體機的價格比今年上漲25%,每套型一體機的價格不變,若購買型一體機的總費用不低于購買型一體機的總費用,那么該市明年至少需要投入多少萬元才能完成采購計劃?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生每周平均課外閱讀時間(單位: ) 隨機抽查了該學校九年級部分同學,對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下的統(tǒng)計圖①和②,請根據(jù)相關(guān)信息,解答下列問題;

該校抽查九年級學生的人數(shù)為_______,圖①中的 a值為______;

求統(tǒng)計的這組每周平均課外閱讀時間的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

若該校九年級共有名學生,根據(jù)統(tǒng)計的這組每周平均課外閱讀時間的樣本數(shù)據(jù),估計該校九年級每周平均課外閱讀時間為的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,以BC為直徑的⊙OAB于點D,E、F是⊙O上的兩點,連結(jié)AE、CF、DF,滿足EA=CA.

(1)求證:AE是⊙O的切線;

(2)若⊙O的半徑是3,tanCFD=,求AD的長.

查看答案和解析>>

同步練習冊答案