精英家教網 > 初中數學 > 題目詳情
(2007•太原)如圖①,在等腰梯形ABCD中,AB∥CD,E、F是邊AB上的兩點,且AE=BF,DE與CF相交于梯形ABDC內一點O.
(1)求證:OE=OF;
(2)如圖②,當EF=CD時,請你連接DF、CE,判斷四邊形DCEF是什么樣的四邊形,并證明你的結論.

【答案】分析:(1)由等腰梯形的性質得AD=BC,∠A=∠B,因為AE=BF,根據SAS判定△ACE≌△BDF,從而得到∠CEA=∠DFB,即OE=OF;
(2)根據一組對邊平行且相等的四邊形是平行四邊形,得到四邊形DCEF是平行四邊形,又知CE=DF,所以得到四邊形DCEF是矩形.
解答:(1)證明:∵梯形ABCD為等腰梯形,AB∥CD
∴AD=BC,∠A=∠B,
在△ADE與△BCF中,

∴△ADE≌△BCF(SAS),
∴∠DEA=∠CFB,
∴OE=OF;

(2)解:?CDEF為矩形.
證明:∵DC∥EF且DC=EF
∴四邊形CDEF是平行四邊形
又由(1)得△ADE≌△BCF
∴DE=CF
∴?CDEF為矩形.
點評:此題主要考查學生對等腰梯形的性質,全等三角形的判定及矩形的判定的理解及運用.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•太原)如圖,在平面直角坐標系中,?ABCO的頂點O在原點,點A的坐標為(-2,0),點B的坐標為(0,2),點C在第一象限.
(1)直接寫出點C的坐標;
(2)將?ABCO繞點O逆時針旋轉,使OC落在y軸的正半軸上,如圖②,得□DEFG(點D與點O重合).FG與邊AB、x軸分別交于點Q、點P.設此時旋轉前后兩個平行四邊形重疊部分的面積為S,求S的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設動點D的坐標為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數關系式.(直接寫出結果)

查看答案和解析>>

科目:初中數學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數學試卷(邱海燕)(解析版) 題型:解答題

(2007•太原)如圖,有兩個可以自由轉動的均勻轉盤,轉盤A被分成面積相等的三個扇形,轉盤B被分成面積相等的四個扇形,每個扇形內都涂有顏色.同時轉動兩個轉盤,停止轉動后,若一個轉盤的指針指向紅色,另一個轉盤的指針指向藍色,則配成紫色;若其中一個指針指向分界線時,需重新轉動兩個轉盤.
(1)用列表或畫樹狀圖的方法,求同時轉動一次轉盤A、B配成紫色的概率;
(2)小強和小麗要用這兩個轉盤做游戲,他們想出如下兩種游戲規(guī)則:
①轉動兩個轉盤,停止后配成紫色,小強獲勝;否則小麗獲勝;
②轉動兩個轉盤,停止后指針都指向紅色,小強獲勝;指針都指向藍色,小麗獲勝.
判斷以上兩種規(guī)則的公平性,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2008-2009學年江蘇省揚州市儀征市大儀中學九年級(下)第一次月考數學試卷(解析版) 題型:解答題

(2007•太原)如圖①,在等腰梯形ABCD中,AB∥CD,E、F是邊AB上的兩點,且AE=BF,DE與CF相交于梯形ABDC內一點O.
(1)求證:OE=OF;
(2)如圖②,當EF=CD時,請你連接DF、CE,判斷四邊形DCEF是什么樣的四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2007年山西省太原市中考數學試卷(解析版) 題型:填空題

(2007•太原)如圖,正方形ABCD的邊長為cm,對角線AC,BD相交于點O,過O作OD1⊥AB于D1,過D1作D1D2⊥BD于點D2,過D2作D2D3⊥AB于D3,…,依此類推.其中的OD1+D2D3+D4D5+D6D7=    cm.

查看答案和解析>>

同步練習冊答案