如圖1,矩形紙片ABCD中,AD=14cm,AB=10cm.
(1)將矩形紙片ABCD沿折線(xiàn)AE對(duì)折,使AB邊與AD邊重合,B點(diǎn)落在F點(diǎn)處,如圖2所示;再剪去四邊形CEFD,余下的部分如圖所示.若將余下的紙片展開(kāi),則所得的四邊形ABEF的形狀是
 
,它的面積為
 
cm2;
(2)將圖3中的紙片沿折線(xiàn)AG對(duì)折,使AF與AE邊重合,F(xiàn)點(diǎn)落在H點(diǎn)處,如圖4所示;再沿HG將△HGE剪去,余下的部分如圖5所示.
把圖5的紙片完全展開(kāi),請(qǐng)你在圖6的矩形ABCD中畫(huà)出展開(kāi)后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線(xiàn)表示;
(3)求圖5中的紙片完全展開(kāi)后的圖形面積(結(jié)果保留整數(shù)).
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)根據(jù)翻折變換的性質(zhì),結(jié)合正方形的定義,推出四邊形ABEF為正方形,面積即AB2
(2)根據(jù)題意中翻折變換的步驟進(jìn)行畫(huà)圖即可;
(3)根據(jù)題意推出AB=AH=AF=10,GH=HE,根據(jù)三角形的面積公式求出圖5中的紙片完全展開(kāi)后的圖形面積.
解答:解:(1)正方形;100;

(2)如圖
精英家教網(wǎng)
(3)AE=1O
2
,HE=10
2
-10,
GH=HE,S≈8.6(cm2
∴S多邊形≈83(cm2
答:圖5中的紙片完全展開(kāi)后的圖形面積為83cm2
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)、翻折變換的性質(zhì)、等腰三角形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵在于根據(jù)題意翻折變換出圖形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,將矩形紙片ABCD沿對(duì)角線(xiàn)AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)試找出一個(gè)與△AED全等的三角形,并加以證明;
(2)若AB=8,DE=3,P為線(xiàn)段AC上的任意一點(diǎn),PG⊥AE于G,PH⊥EC于H,試求PG+PH的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松北區(qū)三模)如圖,將矩形紙片ABCD折痕,使點(diǎn)D落在點(diǎn)線(xiàn)段AB的中點(diǎn)F處.若AB=4,則邊BC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把矩形紙片ABCD沿折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處;
( I)求證:B′E=BF
( II)設(shè)AE=a,AB=b,BF=c,求證:a+b>c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,將矩形紙片ABCD沿EF折疊,點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)D′處,已知AB=4,BC=8,則線(xiàn)段AE的長(zhǎng)度是
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線(xiàn)折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖①);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實(shí)踐與運(yùn)用:
如圖,將矩形紙片ABCD按如下順序進(jìn)行折疊:對(duì)折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點(diǎn)C落在DH上的點(diǎn)C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請(qǐng)說(shuō)明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案