已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P為線段AB上任意一點(diǎn),延長PD到E,使DE=2PD,再以PE、PC為邊作□PCQE,求對角線PQ的最小值   
7.

試題分析:設(shè)PQ與DC相交于點(diǎn)G,PE∥CQ,PD=DE,可得,易證得Rt△ADP∽Rt△HCQ,繼而求得BH的長,即可求得答案;
試題解析:如圖,

設(shè)PQ與DC相交于點(diǎn)G,
∵PE∥CQ,PD=DE,

∴G是DC上一定點(diǎn),
作QH⊥BC,交BC的延長線于H,
同理可證∠ADP=∠QCH,
∴Rt△ADP∽Rt△HCQ,

∴CH=3,
∴BH=BC+CH=4+3=7,
∴當(dāng)PQ⊥AB時(shí),PQ的長最小,即為7.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知線段AB=10,點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),則AC的長為_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在□ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點(diǎn)E、F,AE、BF相交于點(diǎn)M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

操作:小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的圓形紙片進(jìn)行如下設(shè)計(jì):
 
說明:方案一:圖形中的圓過點(diǎn)A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個正方形的頂點(diǎn).
紙片利用率=×100%
發(fā)現(xiàn):(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個端點(diǎn).
你認(rèn)為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.
請幫忙計(jì)算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請直接寫出方案三的利用率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(  )
A.任意兩個矩形都相似
B.任意兩個菱形都相似
C.任意兩個等腰三角形都相似
D.任意兩個等邊三角形都相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,DE∥BC,已知AE=6, ,則EC的長是(   )
A.4.5B.8 C.10.5 D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,A、B兩個頂點(diǎn)在x軸的上方,點(diǎn)C的坐標(biāo)是(﹣1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C,并把△ABC的邊長放大到原來的2倍.設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( 。

A.        B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,CD=10,F(xiàn)是AB邊上一點(diǎn),DF交AC于點(diǎn)E,且,則=________,BF=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動,同時(shí)動點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動,連接PM,PN,設(shè)移動時(shí)間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案