(2010•丹東)如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖1,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F是否在直線NE上?都請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖3中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.

【答案】分析:(1)可通過(guò)全等三角形來(lái)證明EN與MF相等,如果連接DE,DF,那么DE就是三角形ABC的中位線,可得出三角形ADE,BDF,DFE,F(xiàn)EC都是等邊三角形,那么∠DEF=∠DFM=60°,DE=DF,而∠MDN和∠FDE都是60°加上一個(gè)∠NDF,因此三角形MDF和EDN就全等了(ASA).由此可得出EN=MF,∠DNE=∠DMB,已知了BD=DF,DM=DN,因此三角形DBM≌三角形DFN,因此∠DFN=∠DBM=120°,因此∠DFN是三角形DFE的外角因此N,F(xiàn),E在同一直線上.
(2)(3)證法同(1)都要證明三角形MDF和EDN全等,證明過(guò)程中都要作出三角形的三條中位線,然后根據(jù)三條中位線分成的小等邊三角形的邊和角相等來(lái)得出兩三角形全等的條件,因此結(jié)論仍然成立.
解答:解:(1)判斷:EN與MF相等(或EN=MF),點(diǎn)F在直線NE上,

(2)成立.
連接DF,NF,證明△DBM和△DFN全等(AAS),
∵△ABC是等邊三角形,
∴AB=AC=BC.
又∵D,E,F(xiàn)是三邊的中點(diǎn),
∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
,
∴△DBM≌△DFN,
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F(xiàn)分別為邊AC,BC的中點(diǎn),
∴EF是△ABC的中位線,
∴EF∥BD,
∴F在直線NE上,
∵BF=EF,
∴MF=EN.

(3)如圖③,MF與EN相等的結(jié)論仍然成立(或MF=NE成立).
連接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,

∴△DNE≌△DMF,
∴MF=NE.
點(diǎn)評(píng):本題主要考查了等邊三角形的性質(zhì)/三角形中位線定理以及全等三角形的判定和性質(zhì)等知識(shí)點(diǎn),根據(jù)等邊三角形的性質(zhì)以及三角形中位線定理得出全等三角形的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市武侯區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鎮(zhèn)江市句容市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年5月湖北省隨州市曾都區(qū)十校聯(lián)考初三數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年遼寧省十二市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案