【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是

已知點(diǎn)A是數(shù)軸上的點(diǎn),完成下列各題:

1)如果點(diǎn)A表示的數(shù)是3,將點(diǎn)A先向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是__________,A、B兩點(diǎn)間的距離為__________;

2)如果點(diǎn)A表示的數(shù)是-4,將點(diǎn)A先向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是__________,A、B兩點(diǎn)間的距離為__________;

3)一般地,如果點(diǎn)A表示的數(shù)是m,將點(diǎn)A先向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)t個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是__________A、B兩點(diǎn)間的距離為__________。

【答案】11,2;(2-92,88;(3m+n-t,|n-t|個(gè)單位長(zhǎng)度

【解析】

根據(jù)數(shù)軸上點(diǎn)的平移規(guī)律:左減右加,依次分析各小題即可求得結(jié)果.

解:如果點(diǎn)A表示的數(shù)是3,將點(diǎn)A先向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是1,AB兩點(diǎn)間的距離為2;

如果點(diǎn)A表示的數(shù)是-4,將點(diǎn)A先向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是-92,A、B兩點(diǎn)間的距離為88;

一般地,如果點(diǎn)A表示的數(shù)是m,將點(diǎn)A先向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)t個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是,AB兩點(diǎn)間的距離為個(gè)單位長(zhǎng)度。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里放有一臺(tái)飲水機(jī)(如圖),飲水機(jī)上有兩個(gè)放水管.課間同學(xué)們依次到飲水機(jī)前用茶杯接水.假設(shè)接水過(guò)程中水不發(fā)生潑灑,每個(gè)同學(xué)所接的水量都是相等的.兩個(gè)放水管同時(shí)打開(kāi)時(shí),它們的流量相同.放水時(shí)先打開(kāi)一個(gè)水管,過(guò)一會(huì)兒,再打開(kāi)第二個(gè)水管,放水過(guò)程中閥門(mén)一直開(kāi)著.飲水機(jī)的存水量y(升)與放水時(shí)間x(分鐘)的函數(shù)關(guān)系如圖所示:

1)求出飲水機(jī)的存水量y(升)與放水時(shí)間x(分鐘)(x≥2)的函數(shù)關(guān)系式;

2)如果打開(kāi)第一個(gè)水管后,2分鐘時(shí)恰好有4個(gè)同學(xué)接水結(jié)束,則前22個(gè)同學(xué)接水結(jié)束共需要幾分鐘?

3)按(2)的放法,求出在課間10分鐘內(nèi)班級(jí)中最多有多少個(gè)同學(xué)能及時(shí)接完水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形中,,點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)的速度移動(dòng),點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)的速度移動(dòng),如果點(diǎn)同時(shí)出發(fā),用表示移動(dòng)的時(shí)間().

1)當(dāng)為何值時(shí),為等腰三角形?

2)求四邊形的面積,并探索一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店,甲種筆記本標(biāo)價(jià)每本8元,乙種筆記本標(biāo)價(jià)每本5元.今天,甲、乙兩種筆記本合計(jì)賣(mài)了100本,共賣(mài)了695!

1)兩種筆記本各銷(xiāo)售了多少?

2)所得銷(xiāo)售款可能是660元嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,其中數(shù)b是最小的正整數(shù),數(shù)a、c滿足|a+2|+(c-6)2=0.若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.

(1)由題意可得:a= ,b= ,c= .

(2)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),設(shè)點(diǎn)A、B、C同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.

①當(dāng)t=2時(shí),分別求AC、AB的長(zhǎng)度;

②在點(diǎn)A、B、C同時(shí)運(yùn)動(dòng)的過(guò)程中,3AC-4AB的值是否隨著時(shí)間t的變化而變化?若變化,說(shuō)明理由;若不變,求出3AC-4AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小麗準(zhǔn)備測(cè)一根旗桿AB的高度,已知小麗的眼睛離地面的距離EC=1.5米,第一次測(cè)量點(diǎn)C和第二次測(cè)量點(diǎn)D之間的距離CD=10米,∠AEG=30°,AFG=60°,請(qǐng)你幫小麗計(jì)算出這根旗桿的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,射線 OC在∠AOB的內(nèi)部,圖中共有 3個(gè)角:∠AOB、∠AOC 和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線 OC是∠AOB的奇妙線.

1)一個(gè)角的角平分線_______這個(gè)角的奇妙線.(填是或不是);

2)如圖 2,若∠MPN60°,射線 PQ繞點(diǎn) P PN位置開(kāi)始,以每秒 10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)∠QPN首次等于 180°時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為 ts).

當(dāng) t為何值時(shí),射線 PM是∠QPN 的奇妙線?

②若射線 PM 同時(shí)繞點(diǎn) P以每秒的速度逆時(shí)針旋轉(zhuǎn),并與 PQ同時(shí)停止旋轉(zhuǎn).請(qǐng)求出當(dāng)射線 PQ是∠MPN的奇妙線時(shí) t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探索新知)

如圖1,點(diǎn)在線段上,圖中共有3條線段:、,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)是線段的“二倍點(diǎn)”.

1)①一條線段的中點(diǎn) 這條線段的“二倍點(diǎn)”;(填“是”或“不是”)

②若線段,是線段的“二倍點(diǎn)”,則 (寫(xiě)出所有結(jié)果)

(深入研究)

如圖2,若線段,點(diǎn)從點(diǎn)的位置開(kāi)始,以每秒2的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為.

2)問(wèn)為何值時(shí),點(diǎn)是線段的“二倍點(diǎn)”;

3)同時(shí)點(diǎn)從點(diǎn)的位置開(kāi)始,以每秒1的速度向點(diǎn)運(yùn)動(dòng),并與點(diǎn)同時(shí)停止.請(qǐng)直接寫(xiě)出點(diǎn)是線段的“二倍點(diǎn)”時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )

A. 130° B. 150° C. 160° D. 170°

查看答案和解析>>

同步練習(xí)冊(cè)答案