(2010•鎮(zhèn)江)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,那么線段OE的長(zhǎng)為   
【答案】分析:連接OC,由垂徑定理可求出CE的長(zhǎng)度,在Rt△OCE中,根據(jù)CE和⊙O的半徑,即可由勾股定理求出OE的長(zhǎng).
解答:解:連接OC;

Rt△OCE中,OC=AB=5,CE=CD=4;
由勾股定理,得:OE==3;
即線段OE的長(zhǎng)為3.
點(diǎn)評(píng):此題考查的是垂徑定理及勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時(shí),Rt△OAB的面積恒為
試解決下列問題:
(1)點(diǎn)D坐標(biāo)為( );
(2)設(shè)點(diǎn)B橫坐標(biāo)為t,請(qǐng)把BD長(zhǎng)表示成關(guān)于t的函數(shù)關(guān)系式,并化簡(jiǎn);
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時(shí),判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(14)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時(shí),Rt△OAB的面積恒為
試解決下列問題:
(1)點(diǎn)D坐標(biāo)為( );
(2)設(shè)點(diǎn)B橫坐標(biāo)為t,請(qǐng)把BD長(zhǎng)表示成關(guān)于t的函數(shù)關(guān)系式,并化簡(jiǎn);
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時(shí),判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時(shí),Rt△OAB的面積恒為
試解決下列問題:
(1)點(diǎn)D坐標(biāo)為( );
(2)設(shè)點(diǎn)B橫坐標(biāo)為t,請(qǐng)把BD長(zhǎng)表示成關(guān)于t的函數(shù)關(guān)系式,并化簡(jiǎn);
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時(shí),判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時(shí),Rt△OAB的面積恒為
試解決下列問題:
(1)點(diǎn)D坐標(biāo)為( );
(2)設(shè)點(diǎn)B橫坐標(biāo)為t,請(qǐng)把BD長(zhǎng)表示成關(guān)于t的函數(shù)關(guān)系式,并化簡(jiǎn);
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時(shí),判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時(shí),Rt△OAB的面積恒為
試解決下列問題:
(1)點(diǎn)D坐標(biāo)為( );
(2)設(shè)點(diǎn)B橫坐標(biāo)為t,請(qǐng)把BD長(zhǎng)表示成關(guān)于t的函數(shù)關(guān)系式,并化簡(jiǎn);
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時(shí),判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案