如圖,在平面直角坐標(biāo)系中有一直角梯形OABC,∠AOC=90°,AB∥OC,OC在x軸上,過A、B、C三點的拋物線表達(dá)式為
(1)求A、B、C三點的坐標(biāo);
(2)如果在梯形OABC內(nèi)有一矩形MNPO,使M在y軸上,N在BC邊上,P在OC邊上,當(dāng)MN為多少時,矩形MNPO的面積最大?最大面積是多少?
(3)若用一條直線將梯形OABC分為面積相等的兩部分,試說明你的分法.

【答案】分析:(1)拋物線的方程已知為:,由題中的圖形可知A點的橫坐標(biāo)為x=0,代入拋物線方程,可得A點的縱坐標(biāo);
因為AB∥OC,所以B點縱坐標(biāo)與A點相同,再將它代入拋物線方程可得B點坐標(biāo);
C點在x軸上,C點縱坐標(biāo)為0,將它代入方程可得C點坐標(biāo).
(2)法一:過B作BQ⊥OC,交MN于H,交OC于Q,則Rt△BNH∽Rt△BCQ,

設(shè)MN=x,NP=y,,可得x和y的關(guān)系式,再由長方形的面積公式:
S=xy,將y用x表達(dá),可得到S關(guān)于x的二次函數(shù),再求此二次函數(shù)的最大值,由此可知MN為何值時,面積最大;
法二:過B作BQ⊥x軸于Q,則Rt△CPN∽Rt△CQB,后面于法一的解答相同;
法三:利用Rt△BHN∽Rt△NPC也能解答;
法四:過B點作BQ⊥x軸于Q,則Rt△BQC∽Rt△NPC,△BQC為等腰直角三角形,△NPC為等腰直角三角形,由此可以得出
PN與MN的關(guān)系式,再代入面積公式,可得二次函數(shù),再求此二次函數(shù)的最大值即可.
(3)①對于任意一條直線,將直線從直角梯形的一側(cè)向另一側(cè)平移的過程中,總有一個位置使得直線將該梯形面積分割成相等的兩部分.

②過上、下底作一條直線交AB于E,交OC于F,且滿足于梯形AEFO或梯形BEFC的上底與下底的和為13即可.

③構(gòu)造一個三角形,使其面積等于整個梯形面積的一半,

④平行于兩底的直線,一定會有其中的一條將原梯形分成面積相等的兩部分;

解答:解:(1)由圖形得,點A橫坐標(biāo)為0,將x=0代入,
得y=10,
∴A(0,10)
∵AB∥OC,
∴B點縱坐標(biāo)為10,將y=10代入拋物線表達(dá)式得,
,
∴x1=0,x2=8.
∵B點在第一象限,
∴B點坐標(biāo)為(8,10)
∵C點在x軸上,
∴C點縱坐標(biāo)為0,將y=0代入拋物線表達(dá)式得,

解得x1=-10,x2=18.
∵C在原點的右側(cè),
∴C點坐標(biāo)為(18,0). (4分)
(2)法一:過B作BQ⊥OC,交MN于H,交OC于Q,則Rt△BNH∽Rt△BCQ,
. (5分)
設(shè)MN=x,NP=y,則有
∴y=18-x. (6分)
∴S矩形MNOP=xy=x(18-x)=-x2+18x=-(x-9)2+81.
∴當(dāng)x=9時,有最大值81.
即MN=9時,矩形MNPO的面積最大,最大值為81. (8分)

法二:過B作BQ⊥x軸于Q,則Rt△CPN∽Rt△CQB,

設(shè)MN=x,NP=y,則有
∴y=18-x.
∴S矩形MNOP=xy=x(18-x)=-x2+18x=-(x-9)2+81.
∴當(dāng)x=9時,有最大值81.
即MN=9時,矩形MNPO的面積最大,最大值為81.
法三:利用Rt△BHN∽Rt△NPC也能解答,解答過程與法二相同.
法四:過B點作BQ⊥x軸于Q,則Rt△BQC∽Rt△NPC,
QC=OC-OQ=18-8=10,又QB=OA=10,
∴△BQC為等腰直角三角形,
∴△NPC為等腰直角三角形.
設(shè)MN=x時矩形MNPO的面積最大.
∴PN=PC=OC-OP=18-x.
∴S矩形MNOP=MN•PN=x(18-x)=-x2+18x=-(x-9)2+81.
∴當(dāng)x=9時,有最大值81.
即MN=9時,矩形MNPO的面積最大,最大值為81.
(3)①對于任意一條直線,將直線從直角梯形的一側(cè)向另一側(cè)平移的過程中,總有一個位置使得直線將該梯形面積分割
成相等的兩部分.

②過上、下底作一條直線交AB于E,交OC于F,且滿足于梯形AEFO或梯形BEFC的上底與下底的和為13即可. (4分)

③構(gòu)造一個三角形,使其面積等于整個梯形面積的一半,因此有:
△OCP1,;△OCP2,;△OAP3,P3(13,0);△CBP4,P4(5,0);
④平行于兩底的直線,一定會有其中的一條將原梯形分成面積相等的兩部分;

點評:本題考查的有:矩形的面積,二次函數(shù)的最值,梯形的面積等考點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案