【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點(diǎn)P是OA上的一動(dòng)點(diǎn),點(diǎn)N(6,0)是OB上的一定點(diǎn),點(diǎn)M是ON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為_____.
【答案】(3,)
【解析】
作N關(guān)于OA的對(duì)稱點(diǎn)N′,連接N′M交OA于P,則此時(shí),PM+PN最小,由作圖得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到N′M⊥ON,解直角三角形即可得到結(jié)論.
作N關(guān)于OA的對(duì)稱點(diǎn)N′,連接N′M交OA于P,
則此時(shí),PM+PN最小,
∵OA垂直平分NN′,
∴ON=ON′,∠N′ON=2∠AON=60°,
∴△NON′是等邊三角形,
∵點(diǎn)M是ON的中點(diǎn),
∴N′M⊥ON,
∵點(diǎn)N(6,0),
∴ON=6,
∵點(diǎn)M是ON的中點(diǎn),
∴OM=3,
∴PM=,
∴P(3,).
故答案為:(3,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點(diǎn)P從點(diǎn)B沿邊BA向點(diǎn)A以1cm/s的速度勻速運(yùn)動(dòng),以P為圓心,PB長為半徑作圓,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t s,若⊙P與⊙O相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=時(shí),△PQR的邊QR經(jīng)過點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過點(diǎn)R作x軸、y軸的平行線,分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1關(guān)于x軸對(duì)稱.
(1)作△ABC關(guān)于x軸對(duì)稱的△A1B1C1,直接寫出點(diǎn)A1坐標(biāo);
(2)在y軸上有一點(diǎn)P使AP+A1P最小,直接寫出點(diǎn)P的坐標(biāo);
(3)請(qǐng)直接寫出點(diǎn)A關(guān)于直線x=m(直線上各點(diǎn)的橫坐標(biāo)都為m)對(duì)稱的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB; ④BE+AC=AB.
一定成立的結(jié)論有____________(填序號(hào)) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).
(1)求b的值;
(2)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù)),使平移后的圖象的頂點(diǎn)在x軸上,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=120°,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α,其中0°<α<90°得△A1BC1 , A1B交AC與點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形的兩邊長分別為m+3,m+13;如圖2的長方形的兩邊長分別為m+5,m+7.(其中m為正整數(shù))
(1)寫出兩個(gè)長方形的面積S1,S2,并比較S1,S2的大小;
(2)現(xiàn)有一個(gè)正方形的周長與圖1中的長方形的周長相等.試探究該正方形的面積與長方形的面積的差是否是一個(gè)常數(shù),如果是,求出這個(gè)常數(shù);如果不是,說明理由.
(3)在(1)的條件下,若某個(gè)圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有19個(gè),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為4,邊在軸上,邊在軸上,點(diǎn)是軸上一點(diǎn),坐標(biāo)為,點(diǎn)為的中點(diǎn),連接.
(1)點(diǎn)的坐標(biāo)為;
(2)判斷的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com