7.有一道題“先化簡,再求值:15x2-(6x2+4x)-(4x2+2x-3)+(-5x2+6x+9),其中x=2016.”小芳同學做題時把“x=2016”錯抄成了“x=2015”,但她的計算結(jié)果卻是正確的,你能說明這是什么原因嗎?

分析 原式去括號合并得到最簡結(jié)果,即可作出判斷.

解答 解:原式=15x2-6x2-4x-4x2-2x+3-5x2+6x+9=12,
結(jié)果不含字母x,原式的值與x的取值無關(guān),
則小芳同學做題時把“x=2016”錯抄成了“x=2015”,但她的計算結(jié)果卻是正確的.

點評 此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

17.下列語句中,正確的是( 。
A.反向延長線段AB,得到射線BAB.延長線段AB到點C,使BC=AC
C.若AB=a,則射線AB=aD.取直線AB的中點C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=20°;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.如圖,直線AB、CD交于點O,OP平分∠BOC,若∠AOD=104°,則∠POD等于( 。
A.52°B.104°C.120°D.128°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.已知菱形ABCD對角線AC=8,BD=4,以AC、BD所在的直線為x軸、y軸建立平面直角坐標系,雙曲線y=$\frac{k}{x}$恰好經(jīng)過DC的中點,過直線BC上的點P作直線l⊥x軸,交雙曲線于點Q.
(1)求k的值及直線BC的函數(shù)解析式;
(2)雙曲線y=$\frac{k}{x}$與直線BC交于M、N兩點,試求線段MN的長;
(3)是否存在點P,使以點B、P、Q、D四點為頂點的四邊形是平行四邊形?若存在,請求出所有P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.解下列方程:
(1)(x-1)2=8
(2)x2-2x-3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,點E,C在線段BF上,且BE=CF,若AB=DE,要使△ABC≌△DEF,還需要添加的一個條件是( 。
A.∠ACB=∠DFEB.∠A=∠DC.AC∥DFD.∠B=∠DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.下列計算正確的是( 。
A.-($\frac{1}{3}$)-2=9B.(-2a32=4a6C.$\sqrt{(-2a)^{2}}$=-2D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE,DG.

(1)當正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=3$\sqrt{3}$.
①求BE的長;②求點A到BE的距離;
(3)當點C落在直線BE上時,連接FC,直接寫出∠FCD的度數(shù).

查看答案和解析>>

同步練習冊答案