若a為整數(shù),且使得
3-a
2a-1
都有意義,則a的值為
 
分析:本題主要考查自變量的取值范圍,函數(shù)關系中主要有二次根式.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù).
解答:解:根據(jù)題意得:
3-a≥0
2a-1≥0
,
解得
1
2
≤a≤3.
故答案為:
1
2
≤a≤3.
點評:函數(shù)自變量的范圍一般從三個方面考慮:
(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);
(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;
(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于B(-2,0),C(4,0)兩點,點E是對稱軸l與x的精英家教網交點.
(1)求二次函數(shù)的解析表達式;
(2)T為對稱軸l上一動點,以點B為圓心,BT為半徑作⊙B,寫出直線CT與⊙B相切時,T點的坐標;
(3)若在x軸上方的P點為拋物線上的動點,且∠BPC為銳角,直接寫出PE的取值范圍;
(4)對于(1)中得到的關系式,若x為整數(shù),在使得y為完全平方數(shù)的所有x的值中,設x的最大值為m,最小值為n,次小值為s,求m、n、s的值.(注:一個數(shù)如果是另一個整數(shù)的完全平方,那么就稱這個數(shù)為完全平方數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于B(-2,0),C(4,0)兩點,點E是對稱軸l與x的交點.
(1)求二次函數(shù)的解析表達式;
(2)T為對稱軸l上一動點,以點B為圓心,BT為半徑作⊙B,寫出直線CT與⊙B相切時,T點的坐標;
(3)若在x軸上方的P點為拋物線上的動點,且∠BPC為銳角,直接寫出PE的取值范圍;
(4)對于(1)中得到的關系式,若x為整數(shù),在使得y為完全平方數(shù)的所有x的值中,設x的最大值為m,最小值為n,次小值為s,求m、n、s的值.(注:一個數(shù)如果是另一個整數(shù)的完全平方,那么就稱這個數(shù)為完全平方數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

若a為整數(shù),且使得數(shù)學公式數(shù)學公式都有意義,則a的值為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若a為整數(shù),且使得
3-a
2a-1
都有意義,則a的值為______.

查看答案和解析>>

同步練習冊答案