【題目】如圖,在長方形ABCD,AB=12厘米,BC=6厘米.P沿AB邊從點A開始向點B2cm/s的速度移動;點Q沿DA邊從點D開始向點A1cm、s的速度移動.如果P、Q同時出發(fā),()表示移動的時間,那么:

(1)如圖1,為何值時,QAP為等腰直角三角形?

(2)如圖2,為何值時,QAB的面積等于長方形面積的

(3)如圖3,P、Q到達B、A后繼續(xù)運動,P點到達C點后都停止運動.為何值時,線段AQ的長等于線段CP的長的一半?

【答案】13;(2);(37.5

【解析】

1)根據(jù)已知條件得到DQ=tcm,AQ=6-tcm,根據(jù)三角形的面積列方程即可得到結(jié)論;

2)根據(jù)等腰三角形的性質(zhì)列方程即可得到結(jié)論;

3)根據(jù)已知條件得到AQ=t-6cm,CP=18-2tcm,依題意使線段AQ的長等于線段CP的長的一半,列方程即可得到結(jié)論.

1)由題可知:DQ=tcm,AQ=6-tcm

∵△QAB的面積=6-t×12,

依題意得:6-t×12=×6×12

解得:t=3;

2)由題可知:DQ=tcmAQ=6-tcm,AP=2tcm

使QAP為等腰三角形,

AQ=AP,

6-t=2t

解得t=2

3)由題可知:AQ=t-6cm,CP=18-2tcm,

依題意使線段AQ的長等于線段CP的長的一半,

t-6=18-2t),

解得:t=7.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點A(0,0)、B(4 ,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1 , 第2個△B1A2B2 , 第3個△B2A3B3 , …則第2017個等邊三角形的邊長等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關系.
(1)求y與x的函數(shù)關系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關于x的不等式組 無解,且使關于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是(
A.﹣2
B.﹣3
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(xy)22x(xy);     2(a1)(a1)(a1)2

3)先化簡,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠蹋?/span>

(1) 3x2 2x 0; (2)

(3) x2 +2 x 5 0 (4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學在一次課外活動中,用硬紙片做了兩個直角三角形,見圖(1)、圖(2).在圖(1)中,∠B=90°,∠A=30°;圖(2)中,∠D=90°,∠F=45°.圖(3)是該同學所做的一個實驗:他將DEF的直角邊DEABC的斜邊AC重合在一起,并將DEF沿AC方向移動.在移動過程中,DE兩點始終在AC邊上,移動開始時,點D與點A重合.

(1)DEF在移動過程中,∠FCE與∠CFE度數(shù)之和是否為定值,請加以說明;

(2)能否將DEF移動至某位置,使F、C的連線與AB平行?若能,求出∠CFE的度數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;

(2)如圖,O為坐標原點,點A在該反比例函數(shù)位于第一象限的圖象上,點B與點A關于軸對稱,若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC中,AD是BAC的角平分線,E為AD上一點,以BE為一邊且在BE下方作等邊BEF,連接CF.

(1)求證:AE=CF;

(2)求ACF的度數(shù).

查看答案和解析>>

同步練習冊答案