【題目】如圖,已知ABCD,分別探討下面三個圖形中∠AEC與∠EAB,∠ECD之間的關系,請你從所得到的關系中任選一個加以證明.

1)在圖1中,∠AEC與∠EAB,∠ECD之間的關系是:________________

2)在圖2中,∠AEC與∠EAB,∠ECD之間的關系是:________________

3)在圖3中,∠AEC與∠EAB,∠ECD之間的關系是:________________

4)在圖______中,求證:________________.(并寫出完整的證明過程)

【答案】1)∠AEC+EAB+ECD=360°;(2)∠AEC=BAE+ECD;(3)∠AEC+EAB=ECD;(4)見詳解

【解析】

1)過點EPEAB,然后根據(jù)平行線的性質求證即可;

2)過點EPEAB,然后根據(jù)平行線的性質求證即可;

3)把ABEC的交點記作P,然后根據(jù)平行線的性質和三角形內角和求證即可;

4)選。1)(2)(3)任意一個根據(jù)平行線性質證明即可.

1)∠AEC+EAB+ECD=360°, 過點EPEAB,如圖1所示:

ABCD

ABPECD,

∴∠BAE+PEA=180°,∠PEC+ECD=180°,

∴∠BAE+PEA +PEC +ECD=360°,

∴∠AEC+EAB+ECD=360°;

2)∠AEC=BAE+ECD, 過點EPEAB,如圖2所示:

ABCD

ABPECD,

∴∠PEA =BAE,∠PEC =ECD,

∴∠AEC=PEA +PEC =BAE+ECD;

3)把ABEC的交點記作P,如圖3所示:

ABCD,

∴∠ECD=EPB

∵∠AEC+EAB+EPA=180°,∠EPB+EPA=180°

∴∠AEC+EAB=EPB

∴∠AEC+EAB=ECD

4)任意選取圖12、3,證明過程見(1)(2)(3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠B45°,過點CCEAD于點,連結AC,過點DDFAC于點F,交CE于點G,連結EF

1)若DG8,求對角線AC的長;

2)求證:AF+FGEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點放在斜邊的中點處,將三角板繞點旋轉,三角板的兩直角邊分別交射線、、兩點.如圖①、②、③是旋轉三角板得到的圖形中的3種情況.

1)觀察圖①,當三角板繞點旋轉到時,我們發(fā)現(xiàn):__________.(選填“”、“”或“”)

2)當三角板繞點旋轉到圖②所示位置時,判斷(1)題中之間的大小關系還存在嗎?請你結合圖②說明理由.

3)三角板繞點旋轉,是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有、兩種型號的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.

A型號客車

B型號客車

載客量(人/輛)

45

30

租金(元/輛)

600

450

(1)求、兩種型號的客車各有多少輛?

(2)某中學計劃租用兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元. 求最多能租用多少輛A型號客車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1和∠2互為補角,∠A=D,求證:∠B=C

請在下面的證明過程的括號內,填寫依據(jù).

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD

∵∠1+2=180°(已知)

∴∠2+CGD=180°(等量代換)

AE//FD

∴∠AEC=D

∵∠A=D(已知)

∴∠AEC=A

AB//CD

∴∠B=C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,某市對居民用電實行階梯收費(總電費=第一階梯電費+第二階梯電費).規(guī)定:用電量不超過200度按第一階梯電價收費,超過200度的部分按第二階梯電價收費.如圖是張磊家20181月和3月所交電費的收據(jù),則該市規(guī)定的第一階梯電價和第二階梯電價分別為每度( 。

A. 0.5元、0.6 B. 0.4元、0.5 C. 0.3元、0.4 D. 0.6元、0.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= 的圖象經(jīng)過點(﹣ ,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用熱氣球探測器測量大樓AB的高度,從熱氣球P處測得大樓B的俯角為37°,大樓底部A的俯角為60°,此時熱氣球P離底面的高度為120m.試求大樓AB的高度(結果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應市委和市政府綠色環(huán)保,節(jié)能減排的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?

(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?

查看答案和解析>>

同步練習冊答案