【題目】如圖,已知正方形ABCD的邊長為3,E是邊BC上一點,BE1,將△ABE,△ADF分別沿折痕AE,AF向內(nèi)折疊,點B,D在點G處重合,過點EEHAE,交AF的延長線于H,則線段FH的長為_______.

【答案】

【解析】

設(shè)DFFGx,在Rt△EFC中,由EF1+x,EC312,FC3x,根據(jù)勾股定理構(gòu)建方程求出x,再求出AF,AH即可解決問題.

解:四邊形ABCD是正方形,

∴∠B∠C∠D∠BAD90°ABBCCDAD3,

設(shè)DFFGx

Rt△EFC中,∵EF1+xEC312,FC3x

∴(x+1)222+(3x)2,

解得x

∴AFAE,

由翻折的性質(zhì)可知,∠DAF∠GAF,∠EAB∠EAG,

∴∠EAH45°,

∵EH⊥EA,

∴∠AEH90°,

∴AEEH,AHAE2

∴FHAHAF2,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線y=x2+bx+c經(jīng)過點A(-1,0),B(5,0).

(1)求拋物線的解析式并寫出頂點M的坐標(biāo);

(2)若點C在拋物線上,且點C的橫坐標(biāo)為8,求四邊形AMBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次安全知識測驗中,學(xué)生得分均為整數(shù),滿分10分,成績達(dá)到9分為優(yōu)秀,這次測驗中甲、乙兩組學(xué)生人數(shù)相同,成績?nèi)缦陆y(tǒng)計圖:

1)在乙組學(xué)生成績統(tǒng)計圖中,8分所在的扇形的圓心角為___________

2)請補(bǔ)充完整下面的成績統(tǒng)計分析表:

平均數(shù)

方差

眾數(shù)

中位數(shù)

優(yōu)秀率

甲組

7

1.8

7

7

乙組

1.36

3)你認(rèn)為那組成績較好?從以上信息中寫出兩條支持你的選擇

4)從甲、乙兩組得9分的學(xué)生中抽取兩人參加市級比賽,求這兩人來自不同組的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB10,AD4,點EDC以每秒1個單位的速度運(yùn)動,以AE為一邊在AE的左上方作正方形AEFG,同時垂直于CD的直線MN也從CD以每秒2個單位的速度運(yùn)動,當(dāng)點F落在直線MN上,設(shè)運(yùn)動的時間為t,則t的值為( )

A.1B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑作圓交ACBC于點D、E兩點,AF切⊙O于點A,點DAC中點.

1)求證:AB=BC;

2)若CF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊承接一鐵路工程,在挖掘一條500米長的隧道時,為了盡快完成,實際施工時每天挖掘的長度是原計劃的1.5倍,結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù).

(1)求實際每天挖掘多少米?

(2)由于氣候等原因,需要進(jìn)一步縮短工期,要求完成整條隧道不超過70天,那么為了完成剩下的任務(wù),在實際每天挖掘長度的基礎(chǔ)上,至少每天還應(yīng)多挖掘多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;

(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和爸爸登山,兩人距地面的高度(米)與小亮登山時間(分)之間的函數(shù)圖象分別如圖中折線和線段所示,根據(jù)函數(shù)圖形進(jìn)行一下探究:

1)設(shè)線段所表示的函數(shù)關(guān)系式為,根據(jù)圖象求的值,并寫出的實際意義;

2)若小亮提速后,他登山的速度是爸爸速度的3倍,問:小亮登山多長時間時開始提速?此時小亮距地面的高度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點,其中,.該拋物線與軸交于點,軸交于另一點.

(1)的值及該拋物線的解析式;

(2)如圖2.若點為線段上的一動點(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角和等腰直角,連接,試確定面積最大時點的坐標(biāo).

(3)如圖3.連接、,在線段上是否存在點,使得以為頂點的三角形與相似,若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案