(2010•泰安)如圖,△ABC是等腰直角三角形,∠A=90°,點(diǎn)P、Q分別是AB、AC上的一動(dòng)點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn).
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形APDQ是正方形,并說(shuō)明理由.

【答案】分析:(1)連接AD,根據(jù)直角三角形的性質(zhì)可得AD=BD=DC,從而證明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,則△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,從而證出△PDQ是等腰直角三角形;
(2)若四邊形APDQ是正方形,則DP⊥AP,得到P點(diǎn)是AB的中點(diǎn).
解答:(1)證明:連接AD
∵△ABC是等腰直角三角形,D是BC的中點(diǎn)
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,

∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ為等腰直角三角形;

(2)解:當(dāng)P點(diǎn)運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D為BC中點(diǎn),
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
當(dāng)P為AB的中點(diǎn)時(shí),DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四邊形APDQ為矩形,
又∵DP=AP=AB,
∴矩形APDQ為正方形(鄰邊相等的矩形為正方形).
點(diǎn)評(píng):本題考查正方形的判定:鄰邊相等的矩形為正方形.也考查了等腰直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(33)(解析版) 題型:解答題

(2010•泰安)如圖,在△ABC中,D是BC邊上一點(diǎn),E是AC邊上一點(diǎn),且滿足AD=AB,∠ADE=∠C.
(1)求證:∠AED=∠ADC,∠DEC=∠B;
(2)求證:AB2=AE•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•泰安)如圖,在△ABC中,D是BC邊上一點(diǎn),E是AC邊上一點(diǎn),且滿足AD=AB,∠ADE=∠C.
(1)求證:∠AED=∠ADC,∠DEC=∠B;
(2)求證:AB2=AE•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《概率》(03)(解析版) 題型:選擇題

(2010•泰安)如圖所示的兩個(gè)轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤均被分成四個(gè)相同的扇形,轉(zhuǎn)動(dòng)轉(zhuǎn)盤時(shí)指針落在每一個(gè)扇形內(nèi)的機(jī)會(huì)均等,同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,則兩個(gè)指針同時(shí)落在標(biāo)有奇數(shù)扇形內(nèi)的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2010•泰安)如圖,在△ABC中,D是BC邊上一點(diǎn),E是AC邊上一點(diǎn),且滿足AD=AB,∠ADE=∠C.
(1)求證:∠AED=∠ADC,∠DEC=∠B;
(2)求證:AB2=AE•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2010•泰安)如圖,矩形ABCD的兩對(duì)角線AC、BD交于點(diǎn)O,∠AOB=60°,設(shè)AB=xcm,矩形ABCD的面積為Scm2,則變量s與x間的函數(shù)關(guān)系式為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案