【題目】如圖①,AE是⊙O的直徑,點C是⊙O上的點,連結(jié)AC并延長AC至點D,使CD=CA,連結(jié)ED交⊙O于點B.
(1)求證:點C是劣弧 的中點;
(2)如圖②,連結(jié)EC,若AE=2AC=4,求陰影部分的面積.
【答案】
(1)解:連接CE,
∵AE是⊙O的直徑,
∴CE⊥AD,
∵AC=CD,
∴AE=ED,
∴∠AEC=∠DEC,
∴ ;
∴點C是劣弧 的中點;
(2)連接BC,OB,OC,
∵AE=2AC=4,
∴∠AEC=30°,AE=AD,
∴∠AED=60°,
∴△AED是等邊三角形,
∴∠A=60°,
∵ = ,
∴ = = ,
∴AE∥BC,∠BOC=60°,
∴S△OBC=S△EBC,
∴S陰影=S扇形= = π.
【解析】(1)連接CE,由AE是⊙O的直徑,得到CE⊥AD,根據(jù)等腰三角形的性質(zhì)得到∠AEC=∠DEC,于是得到結(jié)論;(2)連接BC,OB,OC,由已知條件得到△AED是等邊三角形,得到∠A=60°,推出AE∥BC,∠BOC=60°,于是得到結(jié)論.
【考點精析】掌握圓周角定理和扇形面積計算公式是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新定義函數(shù):在y關(guān)于x的函數(shù)中,若0≤x≤1時,函數(shù)y有最大值和最小值,分別記ymax和ymin , 且滿足 ,則我們稱函數(shù)y為“三角形函數(shù)”.
(1)若函數(shù)y=x+a為“三角形函數(shù)”,求a的取值范圍;
(2)判斷函數(shù)y=x2﹣ x+1是否為“三角形函數(shù)”,并說明理由;
(3)已知函數(shù)y=x2﹣2mx+1,若對于0≤x≤1上的任意三個實數(shù)a,b,c所對應的三個函數(shù)值都能構(gòu)成一個三角形的三邊長,則求滿足條件的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認真閱讀下面關(guān)于這個圖的探究片段,完成所提出的問題.
(1)探究1:小強看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強寫出了如下的證明過程:
證明:如圖1,取AB的中點M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點E,M分別為正方形的邊BC和AB的中點
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強繼續(xù)探索,如圖2,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強進一步還想試試,如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強看,若不成立請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在平面直角坐標系中,直線y=﹣x+4交坐標軸于A、B兩點,過點C(﹣4,0)作CD⊥AB于D,交y軸于點E.
(1)求證:△COE≌△BOA;
(2)如圖2,點M是線段CE上一動點(不與點C、E重合),ON⊥OM交AB于點N,連接MN.
①判斷△OMN的形狀.并證明;
②當△OCM和△OAN面積相等時,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與軸、軸交于C、D兩點,與反比例函數(shù)的圖像相交于點和點,過點A作AM⊥y軸于點M,過點B作BN⊥x軸于點N,連結(jié)MN、OA、OB.下列結(jié)論:
①;②;③四邊形與四邊形MNCA的周長相等;④.其中正確的個數(shù)是( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB邊上的兩個動點,滿足∠DCE=45°.
(1)如圖②,把△ADC繞著點C順時針旋轉(zhuǎn)90°,得到△BKC,連結(jié)EK.
①求證:△DCE≌△KCE.
②求證:DE2=AD2+BE2 .
③思考與探究:當點D從點A向AB的中點運動的過程中,請嘗試寫出DE長度的變化趨勢 ;并直接寫出DE長度的最大值或最小值 (標明最大值或最小值).
(2)如圖③,若△CDE的外接圓⊙O分別交AC,BC于點F、G,求證:CF:CG=BE:AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)下面四個圖分別由六個相同的正方形拼接而成,其中不能折(從A、B、C、D選擇)的是_________.
(2)用斜二側(cè)畫法補畫圖1的圖形,使之成為長方體的直觀圖(虛線表示被遮住的線段;只要在已有圖形基礎(chǔ)上畫出長方體,不必寫畫法步驟).
(3)在這一長方體中,從同一個頂點出發(fā)的三個面的面積之比是5:7:2,其中最大的比最小的面積大60cm2,求這個長方體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com