【題目】如圖,在中,的平分線相交于點,過點于點,交于點,過點于點,下列四個結論:

;②;

③點各邊的距離相等;③設,則

其中正確的結論是__________.(填所有正確結論的序號)

【答案】①②③④

【解析】

由在中,的平分線相交于點,根據(jù)角平分線的定義與三角形內角和定理,即可求得②正確;由平行線的性質和角平分線的定義得出△BEO△CFO是等腰三角形得出,故①正確;由角平分線的性質得出點各邊的距離相等,故③正確;由角平分線定理與三角形面積的求解方法,即可求得,故④正確.

中,的平分線相交于點

,

,故②正確

中,的平分線相交于點

,

,

,故①正確

過點OM,作N,連接OA

中,的平分線相交于點

,故④正確

中,的平分線相交于點

∴點各邊的距離相等,故③正確

故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于任意三個實數(shù)a,b,c,用min|a,b,c|表示這三個實數(shù)中最小數(shù),例如:min|-2,0,1|=-2,則:

1)填空,min|-20190,(--2-|=______,如果min|3,5-x,3x+6|=3,則x的取值范圍為______;

2)化簡:÷x+2+)并在(1)中x的取值范圍內選取一個合適的整數(shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1)x+ca>0)的圖象經過坐標原點O,一次函數(shù)y=﹣x+4x軸、y軸分別交于點AB

(1)c   ,點A的坐標為   ;

(2)若二次函數(shù)yax2﹣(2a+1)x+c的圖象經過點A,求a的值;

(3)若二次函數(shù)yax2﹣(2a+1)x+c的圖象與AOB只有一個公共點,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明用的練習本可在甲、乙兩個商店買到.已知兩個商店的標價都是每本1元,但甲商店的優(yōu)惠條件是:購買10本以上,從第11本開始按標價的七折賣;乙商店的優(yōu)惠條件是:從第一本開始就按標價的八五折賣.小明要買18個練習本,到__________商店買較省錢;小明現(xiàn)有24元,最多可買__________本練習本.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于點F.

(1)求證:△ABE∽△DEF;

(2)求CF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時,水面離橋孔頂部 ,因降暴雨水面上升

(1)建立適當?shù)淖鴺讼,并求暴雨后水面的寬;(結果保留根號)

(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小冬與小夏是某中學籃球隊的隊員,在最近五場球賽中的得分如下表所示:

第一場

第二場

第三場

第四場

第五場

小冬

10

13

9

8

10

小夏

12

2

13

21

2

1)根據(jù)上表所給的數(shù)據(jù),填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

小冬

10

10

28

小夏

10

12

324

2)根據(jù)以上信息,若教練選擇小冬參加下一場比賽,教練的理由是什么?

3)若小冬的下一場球賽得分是11分,則在小冬得分的四個統(tǒng)計量中(平均數(shù)、中位數(shù)、眾數(shù)與方差)哪些發(fā)生了改變,改變后是變大還是變?(只要回答是變大變小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一勞動節(jié)大酬賓!,某商場設計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”、“10”、“20“50的字樣.規(guī)定:在本商場同一日內,顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.

(1)該顧客至多可得到________元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:

提出問題:現(xiàn)有2個邊長是1的小正方形,請你把它們分割后,(圖形不得重疊,不得遺漏),組成一個大的正方形,解決這個問題的方法不唯一,但有一個解題的思路是:設新正方形的邊長為.依題意,割補前后圖形的面積相等,有,解得,由此可知新正方形的邊長等于原來正方形的對角線的長.

1)解決問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖3,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.

小東同學的做法是:設新正方形的邊長為).依題意,割補前后圖形的面積相等,有 ,解得 .由此可知新正方形的邊長等于兩個正方形組成的矩形對角線的長.請你在圖3中畫出分割線,在圖4中拼出新的正方形.

2)模仿演練:

現(xiàn)有10個邊長為1的正方形,排列形式如圖5,請把它們分割后拼接成一個新的正方形.要求:在圖5中畫出分割線,并在圖6中的正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.說明:直接畫出圖形,不要求寫分析過程.

3)應用創(chuàng)新:

7是一個大的矩形紙片剪去一個小矩形后的示意圖,請你將它剪成三塊后再拼成正方形(在圖7中畫出分割線,在圖8中要求畫出三塊圖形組裝成大正方形的示意圖).

查看答案和解析>>

同步練習冊答案