(2008•廈門)已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折痕EF交AD邊于E,交BC邊于F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;
(3)在線段AC上是否存在一點P,使得2AE2=AC•AP?若存在,請說明點P的位置,并予以證明;若不存在,請說明理由.

【答案】分析:(1)因為是對折所以AO=CO,利用三角形全等證明EO=FO,四邊形便是菱形;
(2)因為面積是24,也就是AB、BF的積可以求出,所以求周長只要求出AB、BF的和就可以,而結(jié)合勾股定理它們和的平方減去乘積二倍就是AF的平方;
(3)因為AC=AO所以可以從與△AOE相似的角度考慮,即過E作EP⊥AD.
解答:(1)證明:連接EF交AC于O,
當頂點A與C重合時,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°(1分)
∵在矩形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF(ASA).
∴OE=OF(2分)
∴四邊形AFCE是菱形.(3分)

(2)解:四邊形AFCE是菱形,∴AF=AE=10.
設(shè)AB=x,BF=y,∵∠B=90,
∴(x+y)2-2xy=100①
又∵S△ABF=24,∴xy=24,則xy=48.②(5分)
由①、②得:(x+y)2=196(6分)
∴x+y=14,x+y=-14(不合題意舍去)
∴△ABF的周長為x+y+AF=14+10=24.(7分)

(3)解:過E作EP⊥AD交AC于P,則P就是所求的點.(9分)
證明:由作法,∠AEP=90°,
由(1)得:∠AOE=90°,又∠EAO=∠EAP,
∴△AOE∽△AEP(AA),
=,則AE2=AO•AP(10分)
∵四邊形AFCE是菱形,∴AO=AC,AE2=AC•AP(11分)
∴2AE2=AC•AP(12分)
即P的位置是:過E作EP⊥AD交AC于P.
點評:本題主要考查(1)菱形的判定方法“對角線互相垂直且平分的四邊形”,(2)相似三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2008•廈門)已知一次函數(shù)與反比例函數(shù)的圖象交于點P(-2,1)和Q(1,m)
(Ⅰ)求反比例函數(shù)的關(guān)系式;
(Ⅱ)求Q點的坐標和一次函數(shù)的解析式;
(Ⅲ)在同一直角坐標系中畫出這兩個函數(shù)圖象的示意圖,并觀察圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點回歸+鞏固 專題13 二次函數(shù)(解析版) 題型:解答題

(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•廈門)已知一次函數(shù)與反比例函數(shù)的圖象交于點P(-2,1)和Q(1,m)
(Ⅰ)求反比例函數(shù)的關(guān)系式;
(Ⅱ)求Q點的坐標和一次函數(shù)的解析式;
(Ⅲ)在同一直角坐標系中畫出這兩個函數(shù)圖象的示意圖,并觀察圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

同步練習(xí)冊答案