【題目】閱讀理解:

給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的 2 倍,則這個矩形是給定矩形的“加倍”矩形.如圖,矩形 A1B1C1D1是矩形 ABCD 的“加倍”矩形.請你解決下列問題:

1)邊長為 a 的正方形存在“加倍”正方形嗎?如果存在,求出“加倍”正方形的邊長;如果不存在,說明理由.

2)當矩形的長和寬分別為 mn 時,它是否存在“加倍”矩形?請作出判斷,說明理由.

【答案】1)不存在.理由見解析;(2)存在.理由見解析.

【解析】

1)根據(jù)所有的正方形都相似由相似比確定面積比后即可做出判斷;

2)設加倍矩形的長和寬分別為xy,可得的關系,分析可得x,y就是關于A的方程A2-2m+nA+2mn=0的兩個正根,判斷可得:△=4m2+n2)>0,故存在加倍矩形.

根據(jù)給出的兩邊長得到周長,然后設出其中一邊,表示出另一邊根據(jù)題意列出方程求解,若能求得答案即存在,否則就不存在.

1)不存在.

因為兩個正方形是相似圖形,當它們的周長比為 2 時,則面積比必定是 4,所以不存在.

(相同解答均可給分,如:滿足周長是 2 倍時,則面積就成了 4 倍,所以不存在)

2)存在.

加倍矩形的長和寬分別為 x,y

則:

x,y 就是關于 A 的方程 A22m+nA+2mn0 的兩個正根.

∵△[2m+n]28mn4(m2+n2)

此題中,m0,n0

∴△4m2+n2)>0

方程有兩個不相等的正實數(shù)根 x y.

即:存在一個矩形是已知矩形的加倍矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的開口向上頂點為P

1)若P點坐標為(4,一1),求拋物線的解析式;

2)若此拋物線經(jīng)過(4,一1),當-1x2時,求y的取值范圍(用含a的代數(shù)式表示)

3)若a1,且當0x1時,拋物線上的點到x軸距離的最大值為6,求b的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABD中,ABAD,以AB為直徑的⊙FBD于點C,交ADE,CG是⊙F的切線,CGAD于點G

1)求證:CGAD;

2)填空:

①若BDA的面積為80,則BCF的面積為   ;

②當∠BAD的度數(shù)為   時,四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(60).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S

S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線yx2經(jīng)過點Ax1y1)、Cx2,y2),其中x1、x2是方程x22x80的兩根,且x1x2,過點A的直線l與拋物線只有一個公共點

1)求A、C兩點的坐標;

2)求直線l的解析式;

3)如圖2,點B是線段AC上的動點,若過點By軸的平行線BE與直線l相交于點E,與拋物線相交于點D,過點EDC的平行線EF與直線AC相交于點F,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點FFG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;

(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向,有一艘小船停在點P,A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展經(jīng)典誦讀比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內(nèi)容進行誦讀比賽.

1)小禮誦讀《論語》的概率是   ;(直接寫出答案)

2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.

查看答案和解析>>

同步練習冊答案