【題目】有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).

小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進行了探究.

下面是小東的探究過程,請補充完整:

(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______

(2)如表是yx的幾組對應值

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

m

m的值為_______

(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________

【答案】(1)任意實數(shù);(2);(3)見解析;(4)①當x<﹣2時,yx的增大而增大;②當x>2時,yx的增大而增大.

【解析】

(1)沒有限定要求,所以x為任意實數(shù),

(2)把x=3代入函數(shù)解析式即可,

(3)描點,連線即可解題,

(4)看圖確定極點坐標,即可找到增減區(qū)間.

解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);

故答案為:任意實數(shù);

(2)把x=3代入y=﹣2x得,y=﹣;

故答案為:﹣;

(3)如圖所示;

(4)根據(jù)圖象得,x<﹣2時,yx的增大而增大;

x>2時,yx的增大而增大.

故答案為:x<﹣2時,yx的增大而增大;

x>2時,yx的增大而增大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Ⅰ)已知方程①

請判斷這兩個方程是否有解?并說明理由;

Ⅱ)已知 ,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂高離水面2m時,水面寬4m,水面下降2.5m,水面寬度增加( 。

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點坐標為M(1,4),且經(jīng)過點N(2,3),與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C、設直線CMx軸交于點D

(1)求拋物線的解析式.

(2)在拋物線的對稱軸上是否存在點P,使以點P為圓心的圓經(jīng)過AB兩點,且與直線CD相切?若存在,求出P的坐標;若不存在.請說明理由.

(3)設直線ykx+2與拋物線交于Q、R兩點,若原點O在以QR為直徑的圓外,請直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B的坐標分別為(-2,3)和(1,3),拋物線y=ax2+bx+ca0)的 頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(CD的左側(cè)),給出下列結(jié)論:①c3;②當x<-3時,yx的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為-5;④當四邊形ACDB為平行四邊形時,a.其中正確的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))的對稱軸為x=1,與y軸的交點為c(0,4),y的最大值為5,頂點為M,過點D(0,1)且平行于x軸的直線與拋物線交于點A,B.

Ⅰ)求該二次函數(shù)的解析式和點A、B的坐標;

Ⅱ)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與BCD相似,求出所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進價分別是多少元?

2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DE,F為線段DE上一點,且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8AD=6,AF=4,求AE的長.

查看答案和解析>>

同步練習冊答案