【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求證:AD=AE;
(2)若AD=8,DC=4,求AB的長.

【答案】
(1)證明:連接AC,

∵AB∥CD,

∴∠ACD=∠BAC,

∵AB=BC,

∴∠ACB=∠BAC,

∴∠ACD=∠ACB,

∵AD⊥DC,AE⊥BC,

∴∠D=∠AEC=90°,

∵AC=AC,

,

∴△ADC≌△AEC,(AAS)

∴AD=AE


(2)解:由(1)知:AD=AE,DC=EC,

設(shè)AB=x,則BE=x﹣4,AE=8,

在Rt△ABE中∠AEB=90°,

由勾股定理得:82+(x﹣4)2=x2,

解得:x=10,

∴AB=10.

說明:依據(jù)此評分標(biāo)準(zhǔn),其它方法如:過點(diǎn)C作CF⊥AB用來證明和計(jì)算均可得分.


【解析】(1)連接AC證明AD、AE所在的三角形全等,即證明△ADC≌△AEC,即可得出結(jié)論。
(2)設(shè)AB=x,再用含x的代數(shù)式表示BE,利用勾股定理得到關(guān)于x的方程,求解即可。
【考點(diǎn)精析】本題主要考查了勾股定理的概念和直角梯形的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;一腰垂直于底的梯形是直角梯形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),

(1)求二次函數(shù)解析式及對稱軸方程;
(2)連接BC,交對稱軸于點(diǎn)E,求E點(diǎn)坐標(biāo);
(3)在y軸上是否存在一點(diǎn)M,使△BCM為等腰三角形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(4)在第四象限內(nèi)拋物線上是否存一點(diǎn)H,使得四邊形ACHB的面積最大?若存在,求出點(diǎn)H坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下圖的直角坐標(biāo)系中,將△ABC平移后得到△ABC’,它們的個(gè)頂點(diǎn)坐標(biāo)如下表所示

ABC

A(00)

B(3,0)

C(5,5)

ABC

A(4,2)

B(7,b)

C(cd)

(1)觀察表中各對應(yīng)點(diǎn)坐標(biāo)的變化,并填空:△ABC______平移______個(gè)單位長度,再向______平移______個(gè)單位長度可以得到△ABC';

(2)在坐標(biāo)系中畫出△ABC及平移后的△ABC';

(3)求出△ABC'的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB//CD,點(diǎn)G在直線AB, 點(diǎn)H在直線CD,點(diǎn)KAB、CD之間且在G、H所在直線的左側(cè), GKH=60°,點(diǎn)P為線段KH上一點(diǎn)(不和K、H重合),連接PG并延長到M, 設(shè)∠KHC=nKGP,要使得為定值,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,每個(gè)小正方形的邊長為1個(gè)單位長度,正方形ABFGFCDE的頂點(diǎn)均和小正方形的頂點(diǎn)重合.

(1)建立平面直角坐標(biāo)系,使得B,C的坐標(biāo)分別為(0,0),(4,0),并寫出點(diǎn)A的坐標(biāo);

(2)直接寫出正方形FCDE的邊長;

(3)連接EG,直接比較三角形BCF和三角形GEF的面積大小 (大于小于,等于作答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l所對應(yīng)的函數(shù)表達(dá)式為y=x.過點(diǎn)A1(0,1)作y軸的垂線交直線l于點(diǎn)B1 , 過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;過點(diǎn)A2作y軸的垂線交直線l于點(diǎn)B2 , 則點(diǎn)B2的坐標(biāo)為( )

A.(1,1)
B.( ,
C.(2,2)
D.( ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.

(1)寫出點(diǎn)C的坐標(biāo);

(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);

(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張邊長為厘米的正方形桌面,因?yàn)閷?shí)際需要,需將正方形邊長增加厘米,木工師傅設(shè)計(jì)了如圖所示的三種方案:

小明發(fā)現(xiàn)這三種方案都能驗(yàn)證公式:.

對于方案一,小明是這樣驗(yàn)證的:

大正方形面積可表示為:,也可以表示為:,

.

請你仿照上述方法根據(jù)方案二、方案三,寫出公式的驗(yàn)證過程.

(1)方案二:

(2)方案三:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:(﹣ 2﹣| ﹣1|+(﹣ +1)0+3tan30°
(2)解方程: + =4.

查看答案和解析>>

同步練習(xí)冊答案