(12分)如圖所示,AB是⊙O的直徑,∠B=30°,弦BC=6,∠ACB的平分線交⊙O于D,連AD.

1.(1) 求直徑AB的長;

2.(2) 求陰影部分的面積(結果保留π).

 

【答案】

 

1.解:(1) ∵AB為⊙O的直徑,

∴∠ACB=90°,    ……………………………………1分

∵∠B=30,

∴AB=2AC,       ……………………………………3分

∵AB2=AC2+BC2,

∴AB2=AB2+62,    …………………………………5分

∴AB=4. 

2.(2) 連接,

∵AB=4,∴OA=OD=2,      …………………………………………………8分

∵CD平分∠ACB,∠ACB=90°,

∴∠ACD=45°,

∴∠AOD=90°,        …………………………………………………………………9分

∴S△AOD=OA·OD=·2·2=6,       ……………………………………10分

∴S扇形△AOD=·π·OD2=·π·(2)2=3π,       ………………………………11分

∴陰影部分的面積= S扇形△AOD-S△AOD=3π-6.

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分12分)

如圖所示,在平面直角坐標系中,頂點為()的拋物線交軸于點,交軸于,兩點(點在點的左側),已知點坐標為(,).

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點

如果以點為圓心的圓與直線相切,請判斷拋物

線的對稱軸與⊙有怎樣的位置關系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于,

兩點之間,問:當點運動到什么位置時,

面積最大?并求出此時點的坐標和的最大面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分12分)
如圖所示,在平面直角坐標系中,頂點為()的拋物線交軸于點,交軸于,兩點(點在點的左側), 已知點坐標為(,).

(1)求此拋物線的解析式;
(2)過點作線段的垂線交拋物線于點
如果以點為圓心的圓與直線相切,請判斷拋物
線的對稱軸與⊙有怎樣的位置關系,并給出證明;
(3)已知點是拋物線上的一個動點,且位于
兩點之間,問:當點運動到什么位置時,
面積最大?并求出此時點的坐標和的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆部分學校九年級下學期聯(lián)考數(shù)學卷 題型:解答題

(本題滿分12分)如圖所示,在平面直角坐標系中,矩形ABOC的邊OB在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉60°后得矩形EFOD. 點A的對應點為點E,點B的對應點為F,點C的對應點為點D. 拋物線過點A、E、D.

【小題1】(1) 判斷點E是否在y軸上,并說明理由;
【小題2】(2)求拋物線的解析式;
【小題3】(3)在x 軸的上方是否存在點P、Q,使以點O、B、P、Q為頂點的平行四邊形的面積是矩形ABOC的面積的2倍,且點P在拋物線上,若存在,求P、Q兩點的坐標,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年部分學校九年級下學期聯(lián)考數(shù)學卷 題型:解答題

(本題滿分12分) 如圖所示,在平面直角坐標系中,矩形ABOC的邊OB在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉60°后得矩形EFOD. 點A的對應點為點E,點B的對應點為F,點C的對應點為點D.  拋物線過點A、E、D.

1.(1) 判斷點E是否在y軸上,并說明理由;

2.(2)求拋物線的解析式;

3.(3)在x 軸的上方是否存在點P、Q,使以點O、B、P、Q為頂點的平行四邊形的面積是矩形ABOC的面積的2倍,且點P在拋物線上,若存在,求P、Q兩點的坐標,若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣西省貴港市九年級第一次教學質(zhì)量監(jiān)測數(shù)學卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標系中,頂點為(,)的拋物線交軸于點,交軸于兩點(點在點的左側), 已知點坐標為().

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點,

如果以點為圓心的圓與直線相切,請判斷拋物

線的對稱軸與⊙有怎樣的位置關系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于,

兩點之間,問:當點運動到什么位置時,

面積最大?并求出此時點的坐標和的最大面積.

 

查看答案和解析>>

同步練習冊答案