如圖,直線分別交x軸、y軸于A、B兩點,線段AB的垂直平分線分別交x軸、y軸于C、D兩點.
(1)求點C的坐標;
(2)求△BCD的面積.

【答案】分析:(1)由直線y=-x+8,分別交x軸、y軸于A、B兩點,即可求得點A與B的坐標,即可得OA,OB,由勾股定理即可求得AB的長,由CD是線段AB的垂直平分線,可求得AE與BE的長,易證得△AOB∽△AEC,然后由相似三角形的對應邊成比例,即可求得AC的長,繼而求得點C的坐標;
(2)易證得△AOB∽△DEB,由相似三角形的對應邊成比例,即可求得BD的長,又由S△BCD=BD•OC,即可求得△BCD的面積.
解答:解:(1)∵直線y=-x+8,分別交x軸、y軸于A、B兩點,
當x=0時,y=8;當y=0時,x=6.
∴OA=6,OB=8.
在Rt△AOB中,AB==10,
∵CD是線段AB的垂直平分線,
∴AE=BE=5.
∵∠OAB=∠CAE,∠AOB=∠AEC=90°,
∴△AOB∽△AEC,
,
,
∴AC=
∴OC=AC-OA=,
∴點C的坐標為(-,0);

(2)∵∠ABO=∠DBE,∠AOB=∠BED=90°,
∴△AOB∽△DEB,

,
∴BD=
∴S△BCD=BD•OC=××=
點評:此題考查了相似三角形的判定與性質(zhì)、點與一次函數(shù)的性質(zhì)、勾股定理以及線段垂直平分線的性質(zhì).此題難度較大,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,如圖,直線分別交x軸、y軸于點A(-4,0),C,點P(2,m)是直線AC與雙精英家教網(wǎng)曲線y=
kx
在第一象限內(nèi)的交點,PB⊥x軸,垂足為點B,△APB的面積為6.
(1)求m值;
(2)求兩個函數(shù)的解析式;
(3)在第一象限內(nèi)x為何值時一次函數(shù)大于反比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l分別交x軸、y軸于A、B兩點,且A(3
3
,0)
,∠OAB=30°,動點P、Q同時從點O出發(fā),同時到達A點,運動停止,點Q沿線段OA運動,速度為每秒
3
個單位長度,點P沿路線O→B→A運動.
(1)求直線l的解析式;
(2)設點Q的運動時間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關系式.
(3)在(2)中,若t>1時有S=
3
3
2
,求出此時P點的坐標,并直接寫出以點O、P、Q為頂點的平行四邊形的第四個頂點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=x-1分別交x軸、反比例函數(shù)y=
kx
的圖象于點A、B,若OB2-AB2=5,則k的值是
6
6

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市順義區(qū)李橋中學九年級(上)第三次月考數(shù)學試卷(解析版) 題型:解答題

如圖,直線分別交x軸、y軸于B、A兩點,拋物線L:y=ax2+bx+c的頂點G在x軸上,且過(0,4)和(4,4)兩點.
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點的坐標,若不存在,請說明理由;
(3)將拋物線L沿x軸平行移動得拋物線L1,其頂點為P,同時將△PAB沿直線AB翻折得到△DAB,使點D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應的函數(shù)關系式,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:解答題

(2011•甘孜州)如圖,直線y=x+1分別交x軸,y軸于點A,C,點P是直線AC與雙曲線y=在第一象限內(nèi)的交點,PB⊥x軸,垂足為點B,△APB的面積為4.
(1)求點P的坐標;
(2)求雙曲線的解析式及直線與雙曲線另一交點Q的坐標.

查看答案和解析>>

同步練習冊答案