【題目】已知:一次函數(shù)的圖象與反比例函數(shù))的圖象相交于A,B兩點(diǎn)(AB的右側(cè)).

1)當(dāng)A4,2)時(shí),求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

3)當(dāng)Aa,﹣2a+10),Bb,﹣2b+10)時(shí),直線OA與此反比例函數(shù)圖象的另一支交于另一點(diǎn)C,連接BCy軸于點(diǎn)D.若,求△ABC的面積.

【答案】1B1,8);(2)(﹣4,﹣2)、(﹣16);(310

【解析】

試題(1)把點(diǎn)A的坐標(biāo)代入,就可求出反比例函數(shù)的解析式;解一次函數(shù)與反比例函數(shù)的解析式組成的方程組,就可得到點(diǎn)B的坐標(biāo);

2△PAB是以AB為直角邊的直角三角形,分兩種情況討論:∠BAP=90°,過點(diǎn)AAH⊥OEH,設(shè)APx軸的交點(diǎn)為M,如圖1,求得OE=5,OH=4,AH=2,HE=1.證明△AHM∽△EHA,再根據(jù)相似三角形的性質(zhì)可求出MH,從而得到點(diǎn)M的坐標(biāo),然后用待定系數(shù)法求出直線AP的解析式,再解直線AP與反比例函數(shù)的解析式組成的方程組,就可得到點(diǎn)P的坐標(biāo);∠ABP=90°,同理即可得到點(diǎn)P的坐標(biāo);

3)過點(diǎn)BBS⊥y軸于S,過點(diǎn)CCT⊥y軸于T,連接OB,如圖2,易證△CTD∽△BSD,根據(jù)相似三角形的性質(zhì)可得.由Aa,﹣2a+10),Bb,﹣2b+10),可得C﹣a2a﹣10),CT=a,BS=b,即可得到.由A、B都在反比例函數(shù)的圖象上可得a﹣2a+10=b﹣2b+10),把代入即可求出a的值,從而得到點(diǎn)AB、C的坐標(biāo),運(yùn)用待定系數(shù)法求出直線BC的解析式,從而得到點(diǎn)D的坐標(biāo)及OD的值,然后運(yùn)用割補(bǔ)法可求出SCOB,再由OA=OC可得SABC=2SCOB

試題解析:(1)把A4,2)代入,得k=4×2=8反比例函數(shù)的解析式為,解方程組,得:,點(diǎn)B的坐標(biāo)為(1,8);

2∠BAP=90°,過點(diǎn)AAH⊥OEH,設(shè)APx軸的交點(diǎn)為M,如圖1,對于y=﹣2x+10,當(dāng)y=0時(shí),﹣2x+10=0,解得x=5,點(diǎn)E5,0),OE=5∵A4,2),∴OH=4AH=2,∴HE=5﹣4=1∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°∴∠AME+∠AEM=90°,∠AME+∠MAH=90°∴∠MAH=∠AEM,∴△AHM∽△EHA,,,∴MH=4∴M0,0),可設(shè)直線AP的解析式為,則有,解得m=直線AP的解析式為,解方程組,得:點(diǎn)P的坐標(biāo)為(﹣4,﹣2).

∠ABP=90°,同理可得:點(diǎn)P的坐標(biāo)為(﹣16,).

綜上所述:符合條件的點(diǎn)P的坐標(biāo)為(﹣4,﹣2)、(﹣16);

3)過點(diǎn)BBS⊥y軸于S,過點(diǎn)CCT⊥y軸于T,連接OB,如圖2,則有BS∥CT,∴△CTD∽△BSD,,∵Aa,﹣2a+10),Bb,﹣2b+10),∴C﹣a,2a﹣10),CT=a,BS=b=,即∵Aa﹣2a+10),Bb,﹣2b+10)都在反比例函數(shù)的圖象上,∴a﹣2a+10=b﹣2b+10),∴a﹣2a+10=﹣2×+10).∵a≠0,∴﹣2a+10=﹣2×+10),解得:a=3∴A3,4),B2,6),C﹣3,﹣4).

設(shè)直線BC的解析式為,則有,解得:,直線BC的解析式為.當(dāng)x=0時(shí),y=2,則點(diǎn)D0,2),OD=2,∴SCOB=SODC+SODB=OD·CT+OD·BS=×2×3+×2×2=5∵OA=OC,∴SAOB=SCOB,∴SABC=2SCOB=10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn))x45x2+40是一個(gè)一元四次方程.

(探索)根據(jù)該方程的特點(diǎn),通常用換元法解方程:

設(shè)x2y,那么x4   ,于是原方程可變?yōu)?/span>   

解得:y11,y2   

當(dāng)y1時(shí),x21,∴x±1;

當(dāng)y   時(shí),x2   ,∴x   

原方程有4個(gè)根,分別是   

(應(yīng)用)仿照上面的解題過程,求解方程:(x22x2+x22x)﹣60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價(jià)多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCDAEGF都是菱形,∠A60°,AD3,點(diǎn)E,F分別在AB,AD邊上(不與端點(diǎn)重合),當(dāng)△GBC為等腰三角形時(shí),AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識

的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.

(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的直徑的延長線上,點(diǎn)上,且AC=CD,∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長;

2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.

1求證:AB=BC;

2若AB=2,AC=2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A,B,C,D都在這些小正方形上,ABCD相交于點(diǎn)O,則tanAOD等于(  )

A. B. 2C. 1D.

查看答案和解析>>

同步練習(xí)冊答案