分析 過點B作BD⊥OD于點D,根據△ABC為直角三角形可證明△BCD∽△COA,設點B坐標為(x,y),根據相似三角形的性質即可求解.
解答 解:過點B作BD⊥OD于點D,
∵△ABC為直角三角形,
∴∠BCD+∠CAO=90°,
∴△BCD∽△COA,
∴$\frac{BD}{CD}=\frac{CO}{AO}$,
設點B坐標為(x,y),
則$\frac{y}{-x-\sqrt{3}}$=$\frac{\sqrt{3}}{1}$,
y=-$\sqrt{3}$x-3,
∴BC=$\sqrt{(-x-\sqrt{3})^{2}+{y}^{2}}$=$\sqrt{4{x}^{2}+8\sqrt{3}x+12}$,
AC=2,
∵∠B=30°,
∴$\frac{AC}{BC}$=$\frac{2}{\sqrt{4{x}^{2}+8\sqrt{3}x+12}}$=$\frac{\sqrt{3}}{3}$,
解得:x=-4$\sqrt{3}$,
則y=9.
即點B的坐標為(-4$\sqrt{3}$,9).
故答案為:(-4$\sqrt{3}$,9).
點評 本題考查了全等三角形的判定與性質以及坐標與圖形的性質,解答本題的關鍵是作出合適的輔助線,證明三角形的相似,進而求解.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 60° | B. | 50° | C. | 120° | D. | 90° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com