【題目】如圖,□ABCD中,AC與BD相交于點O,AB=AC,延長BC到點E,使CE=BC,連接AE,分別交BD、CD于點F、G.

(1) 求證:△ADB≌△CEA;

(2) 若BD=6,求AF的長.

【答案】(1△ADB≌△CEA;(22

【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD=BC,∠ABC+∠BAD=180°,由等腰三角形的性質(zhì)得出∠ABC=∠ACB.證出∠BAD=∠ACE,CE=AD,由SAS證明△ADB≌△CEA即可;

2)由全等三角形的性質(zhì)得出AE=BD=6,由平行線得出△ADF∽△EBF,得出對應(yīng)邊成比例,即可得出結(jié)果.

試題解析:(1)證明:四邊形ABCD是平行四邊形,

∴AD=BC,∠ABC+∠BAD=180°

∵AB=AC,

∴∠ABC=∠ACB

∵∠ACB+∠ACE=180°,

∴∠BAD=∠ACE

∵CE=BC,

∴CE=AD

∴△ADB≌△CEASAS).

2)解:∵△ADB≌△CEA,

∴AE=BD=6

∵AD∥BC,

∴△ADF∽△EBF

∴AF=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點.已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(2,m),過點A作AB⊥x軸于點B,且△AOB的面積為

(1)求k和m的值;

(2)點C(x,y)在反比例函數(shù)y=的圖象上,求當(dāng)1≤x≤3時函數(shù)值y的取值范圍;

(3)過原點O的直線l與反比例函數(shù)y=的圖象交于P、Q兩點,試根據(jù)圖象直接寫出線段PQ長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果基地積極計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.

每輛汽車能裝的數(shù)量(噸)

4

2

3

每噸水果可獲利潤(千元)

5

7

4

1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?

2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)

3)在(2)問的基礎(chǔ)上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(  )

A. 23+26=29 B. 23﹣24=21 C. 23×23=29 D. 24÷22=22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某地區(qū),高度每升高100米,氣溫下降0.8 .若在該地區(qū)的山腳測得氣溫為15 ℃,在山頂測得氣溫為-5 ℃,你能求出從山頂?shù)缴侥_的高度嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的對話。

小紅:“售貨員,我要買些梨!

售貨員說:“小紅,你上次買的那種梨賣完了,我們還沒來得及進貨,我建議你這次買些新進的蘋果,價格比梨貴一點,不過這批蘋果的味道挺好喲!”

小紅:“好,這次和上次一樣,也花30元!

對照前后兩次的電腦小票,小紅發(fā)現(xiàn),每千克蘋果的單價是梨的1.5倍,買的蘋果的重量比梨輕2.5Kg。

試根據(jù)上面的對話和小紅的發(fā)現(xiàn),分別求出蘋果和梨的單價。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)|-6|,-22,-(-5.1),(-2)3中,負數(shù)的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,對角線AC,BD交于點OABAC,AB=1,BC=

(1)求平行四邊形ABCD的面積S□ABCD;

(2)求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)5月份連續(xù)五天的日最高氣溫(單位:)分別為:33,30,30,32,35.則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是( )

A. 32,32 B. 32,33 C. 30,31 D. 30,32

查看答案和解析>>

同步練習(xí)冊答案