如圖,△ABC中,AB=AC,∠A=50°,P是△ABC內(nèi)一點,且∠PBC=∠PCA,則∠BPC的度數(shù)等于


  1. A.
    100°
  2. B.
    115°
  3. C.
    130°
  4. D.
    140°
B
分析:由已知條件根據(jù)三角形的內(nèi)角和定理和等邊對等角的性質,求得∠ABC=∠ACB=65°,再根據(jù)∠PBC=∠PCA和三角形的內(nèi)角和定理即可求解.
解答:∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°.
∵∠PBC=∠PCA,
∴∠BPC=180°-(∠PBC+∠PCB)=180°-(∠PCA+∠PCB)=180°-∠ACB=115°.
故選B.
點評:此題綜合考查了三角形的內(nèi)角和定理和等腰三角形的性質.對相等的角進行等量代換轉化為一個角是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案