【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點Dx軸的垂線,垂足為E,連接DB.

(1)求此拋物線的解析式及頂點D的坐標;

(2)M是拋物線上的動點,設點M的橫坐標為m.

∠MBA=∠BDE時,求點M的坐標;

過點MMN∥x軸,與拋物線交于點N,Px軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.

【答案】(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為

【解析】

(1)利用待定系數(shù)法即可解決問題;

(2)①根據(jù)tanMBA=,tanBDE==,由∠MBA=BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.

(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,

得到,解得,

∴拋物線的解析式為y=﹣x2+2x+3,

y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,

∴頂點D坐標(1,4);

(2)①作MGx軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),

MG=|﹣m2+2m+3|,BG=3﹣m,

tanMBA=,

DEx軸,D(1,4),

∴∠DEB=90°,DE=4,OE=1,

B(3,0),

BE=2,

tanBDE==

∵∠MBA=BDE,

=

當點Mx軸上方時, =,

解得m=﹣3(舍棄),

M(﹣,),

當點Mx軸下方時, =,

解得m=﹣m=3(舍棄),

∴點M(﹣,﹣),

綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);

②如圖中,∵MNx軸,

∴點M、N關于拋物線的對稱軸對稱,

∵四邊形MPNQ是正方形,

∴點P是拋物線的對稱軸與x軸的交點,即OP=1,

易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,

當﹣m2+2m+3=1﹣m時,解得m=

當﹣m2+2m+3=m﹣1時,解得m=,

∴滿足條件的m的值為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.

(1)求拋物線的解析式;

(2)在第二象限內取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值;

(3)在(2)的條件下,當點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點為二次函數(shù)圖象的頂點,直線分別交軸正半軸,軸于點,.

(1)判斷頂點是否在直線上,并說明理由.

(2)如圖1,若二次函數(shù)圖象也經過點,,且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點坐標為,點內,若點都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分.

運動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

(1)接受問卷調查的共有   人,圖表中的m=   ,n=   

(2)統(tǒng)計圖中,A類所對應的扇形圓心角的度數(shù)為   

(3)根據(jù)調查結果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   

(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點PAD的中點,連接AE,BD,PM,PN,MN.

(1)觀察猜想:

1中,PMPN的數(shù)量關系是   ,位置關系是   

(2)探究證明:

將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AEMP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;

(3)拓展延伸:

△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題背景)

1)如圖1,等腰中,,,則______

(知識應用)

2)如圖2,都是等腰三角形,、三點在同一條直線上,連接.

①求證:;

②請寫出線段,,之間的等量關系式,并說明理由?

3)如圖3,均為等邊三角形,在內作射線,作點關于的對稱點,連接并延長交于點,連接.,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當x30,求y與x之間的函數(shù)關系式;

(2)若小李4月份上網(wǎng)20小時,他應付多少元的上網(wǎng)費用?

(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學類圖書平均每本書價格的1.2倍.已知學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學校購買文學類圖書平均每本書的價格是多少元?設學校購買文學類圖書平均每本書的價格是x元,則下面所列方程中正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點是直線上的動點(不和重合),于點,交直線于點.

1)當點在邊上時,求證:

2)若點的延長線上時,(1)的結論是否成立?若成立,請畫出圖形(不寫畫法,畫出示意圖);若不成立,請直接寫出正確結論.

查看答案和解析>>

同步練習冊答案