如圖,在?ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H,則△DEF的面積是   
【答案】分析:根據(jù)平行四邊形的性質得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根據(jù)相似得出CH=1,EH=,根據(jù)三角形的面積公式求△DFH的面積,即可求出答案.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E為BC中點,
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=
∵AB∥CD,
∴△BFE∽△CHE,
====1,
∴EF=EH=,CH=BF=1,
∵S△DHF=DH•FH=×(1+3)×2=4,
∴S△DEF=S△DHF=2,
故答案為:2
點評:本題主要考查對平行四邊形的性質,平行線的性質,勾股定理,含30度角的直角三角形,三角形的面積,三角形的內角和定理等知識點的理解和掌握,能綜合運用這些性質進行計算是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案